05368nam 22006014a 450 991014575260332120230612072821.01-280-26948-097866102694880-470-09392-70-470-01253-6(CKB)1000000000018885(EBL)191308(OCoLC)475901132(SSID)ssj0000161773(PQKBManifestationID)11155173(PQKBTitleCode)TC0000161773(PQKBWorkID)10219336(PQKB)10457131(MiAaPQ)EBC191308(Au-PeEL)EBL191308(CaPaEBR)ebr10113929(CaONFJC)MIL26948(EXLCZ)99100000000001888520040506d2004 uy 0engur|n|---|||||txtccrGenomics, proteomics, and vaccines[electronic resource] /editor, Guido GrandiChichester ;Hoboken, NJ Wileyc20041 online resource (345 p.)Description based upon print version of record.Print version: Genomics, proteomics, and vaccines Chichester ; Wiley, 2004. (OCoLC)52486434 0-470-85616-5 Includes bibliographical references and index.Genomics, Proteomics and Vaccines -- Contents -- Preface -- List of contributors -- PART 1: INTRODUCTION -- 1 Vaccination: Past, Present and Future -- 1.1 Introduction -- 1.2 Vaccination: the past -- 1.3 Vaccination: the present -- 1.4 Vaccination: the future -- 1.5 Conclusion: the intangible value of vaccination -- 2 Bioinformatics, DNA Microarrays and Proteomics in Vaccine Discovery: Competing or Complementary Technologies? -- 2.1 Introduction -- 2.2 From genome sequence to vaccine discovery -- 2.3 A case study: the anti-meningococcus B vaccine -- 2.4 Comparison of the three approaches -- 2.5 Conclusions: a 'nomics' approach to vaccine discovery -- PART 2: TECHNOLOGIES -- 3 Genome Sequencing and Analysis -- 3.1 Introduction -- 3.2 Genome sequencing -- 3.3 Genome analysis -- 3.4 Conclusion -- 4 Understanding DNA Microarrays: Sources and Magnitudes of Variances in DNA Microarray Data Sets -- 4.1 Introduction -- 4.2 DNA array formats -- 4.3 Data analysis methods -- 4.4 Sources and magnitudes of noise in DNA microarray experiments -- 4.5 Conclusions -- Acknowledgements -- 5 The Proteome, Anno Domini Two Zero Zero Three -- 5.1 Introduction -- 5.2 Some definitions -- 5.3 What methods exist to tackle the proteome complexity?5.4 Quantitative proteomics -- 5.5 Pre-fractionation in proteome analysis -- 5.6 Multi-dimensional chromatography -- 5.7 Protein chip arrays -- 5.8 Imaging mass spectrometry -- Acknowledgements -- 6 Mass Spectrometry in Proteomics -- 6.1 Introduction -- 6.2 MS technology -- 6.3 Principle of protein identification based on MS data -- 6.4 Proteomics workflows -- 7 High Throughput Cloning, Expression and Purification Technologies -- 7.1 Introduction -- 7.2 Gene cloning -- 7.3 Protein expression -- 7.4 High-throughput protein purification -- 7.5 Validation of the pipeline and outlook7.6 Conclusion -- PART 3: APPLICATIONS -- 8 Meningococcus B: from Genome to Vaccine -- 8.1 Meningococcus, a major cause of bacterial meningitis -- 8.2 Group B meningococcus as an example of reverse vaccinology -- 8.3 Conclusions -- 9 Vaccines Against Pathogenic Streptococci -- 9.1 Introduction -- 9.2 Comparative genomics of streptococci -- 9.3 A vaccine against group B streptococcus -- 9.4 A vaccine against group A streptococcus -- 9.5 Conclusions -- 10 Identification of the 'Antigenome' - a Novel Tool for Design and Development of Subunit Vaccines Against Bacterial Pathogens -- 10.1 Introduction -- 10.2 Small DNA insert libraries - a tool to cover a pathogen's 'antigenome' -- 10.3 Proper display platforms -- 10.4 Selected human sera to provide imprints of pathogen encounters -- 10.5 Cognate antibodies reveal the 'antigenome' of a pathogen -- 10.6 How to retrieve from the 'antigenome' the candidate antigens for vaccine development -- 10.7 Summary and discussion -- 11 Searching the Chlamydia Genomes for New Vaccine Candidates -- 11.1 Old problems and new perspectives for chlamydial vaccines.While the sequence of the human genome sequence has hit the headlines, extensive exploitation of this for practical applications is still to come. Genomic and post-genomic technologies applied to viral and bacterial pathogens, which are almost equally important from a scientific perspective, have the potential to be translated into useful products and processes much more rapidly.Genomics, Proteomics and Vaccines introduces the history of vaccinology and discusses how vaccines are expected to evolve in the future. It describes the relevant technologies, including genome sequencing and aGenomicsVaccinesBiotechnologyProteomicsGenomics.VaccinesBiotechnology.Proteomics.572.8/6Grandi Guido55106MiAaPQMiAaPQMiAaPQBOOK9910145752603321Genomics, proteomics, and vaccines2001896UNINA