01243nam2 22002893i 450 SUN009043920120712100110.636978-88-348-1667-720120711d2011 |0itac50 baitaIT|||| |||||ˆ2: Le ‰istituzioni politicheElena Malfatti, Andrea Pertici, Emanuele RossiTorinoGiappichelli2011400 p.24 cm.001SUN00904612001 Manuale di diritto costituzionale italiano ed europeoa cura di Roberto Romboli2210 TorinoGiappichelli215 volumi24 cm.TorinoSUNL000001Malfatti, ElenaSUNV005125260119Rossi, EmanueleSUNV000652118014Pertici, AndreaSUNV025393281478GiappichelliSUNV000045650ITSOL20181109RICASUN0090439UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA00 CONS VIII.En.340 00 BFG5781 UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZABFG5781CONS VIII.En.340caIstituzioni politiche1434453UNICAMPANIA05449nam 2200661 a 450 991014472630332120170815113944.01-282-34823-X97866123482350-470-51781-60-470-51780-8(CKB)1000000000377516(EBL)470265(OCoLC)609849007(SSID)ssj0000296302(PQKBManifestationID)11220132(PQKBTitleCode)TC0000296302(PQKBWorkID)10320254(PQKB)10881774(MiAaPQ)EBC470265(EXLCZ)99100000000037751620071015d2007 uy 0engur|n|---|||||txtccrFibre optic methods for structural health monitoring[electronic resource] /Branko Glišić, Daniele InaudiChichester, West Sussex, England ;Hoboken, NJ John Wiley & Sonsc20071 online resource (280 p.)Description based upon print version of record.0-470-06142-1 Includes bibliographical references (p. [253]-256) and index.FIBRE OPTIC METHODS FOR STRUCTURAL HEALTH MONITORING; Contents; Foreword; Preface; Acknowledgements; 1 Introduction to Structural Health Monitoring; 1.1 Basic Notions, Needs and Benefits; 1.1.1 Introduction; 1.1.2 Basic Notions; 1.1.3 Monitoring Needs and Benefits; 1.1.4 Whole Lifespan Monitoring; 1.2 The Structural Health Monitoring Process; 1.2.1 Core Activities; 1.2.2 Actors; 1.3 On-Site Example of Structural Health Monitoring Project; 2 Fibre-Optic Sensors; 2.1 Introduction to Fibre-Optic Technology; 2.2 Fibre-Optic Sensing Technologies; 2.2.1 SOFO Interferometric Sensors2.2.2 Fabry-Perot Interferometric Sensors2.2.3 Fibre Bragg-Grating Sensors; 2.2.4 Distributed Brillouin- and Raman-Scattering Sensors; 2.3 Sensor Packaging; 2.4 Distributed Sensing Cables; 2.4.1 Introduction; 2.4.2 Temperature-Sensing Cable; 2.4.3 Strain-Sensing Tape: SMARTape; 2.4.4 Combined Strain- and Temperature-Sensing: SMARTprofile; 2.5 Software and System Integration; 2.6 Conclusions and Summary; 3 Fibre-Optic Deformation Sensors: Applicability and Interpretation of Measurements; 3.1 Strain Components and Strain Time Evolution; 3.1.1 Basic Notions3.1.2 Elastic and Plastic Structural Strain3.1.3 Thermal Strain; 3.1.4 Creep; 3.1.5 Shrinkage; 3.1.6 Reference Time and Reference Measurement; 3.2 Sensor Gauge Length and Measurement; 3.2.1 Introduction; 3.2.2 Deformation Sensor Measurements; 3.2.3 Global Structural Monitoring: Basic Notions; 3.2.4 Sensor Measurement Dependence on Strain Distribution: Maximal Gauge Length; 3.2.5 Sensor Measurement in Inhomogeneous Materials: Minimal Gauge Length; 3.2.6 General Principle in the Determination of Sensor Gauge Length; 3.2.7 Distributed Strain Sensor Measurement3.3 Interpretation of strain measurement3.3.1 Introduction; 3.3.2 Sources of Errors and Detection of Anomalous Structural Condition; 3.3.3 Determination of Strain Components and Stress from Total Strain Measurement; 3.3.4 Example of Strain Measurement Interpretation; 4 Sensor Topologies: Monitoring Global Parameters; 4.1 Finite Element Structural Health Monitoring Concept: Introduction; 4.2 Simple Topology and Applications; 4.2.1 Basic Notions on Simple Topology; 4.2.2 Enchained Simple Topology; 4.2.3 Example of an Enchained Simple Topology Application; 4.2.4 Scattered Simple Topology4.2.5 Example of a Scattered Simple Topology Application4.3 Parallel Topology; 4.3.1 Basic Notions on Parallel Topology: Uniaxial Bending; 4.3.2 Basic Notions on Parallel Topology: Biaxial Bending; 4.3.3 Deformed Shape and Displacement Diagram; 4.3.4 Examples of Parallel Topology Application; 4.4 Crossed Topology; 4.4.1 Basic Notions on Crossed Topology: Planar Case; 4.4.2 Basic Notions on Crossed Topology: Spatial Case; 4.4.3 Example of a Crossed Topology Application; 4.5 Triangular Topology; 4.5.1 Basic Notions on Triangular Topology; 4.5.2 Scattered and Spread Triangular Topologies4.5.3 Monitoring of Planar Relative Movements Between Two BlocksThe use of fibre optic sensors in structural health monitoring has rapidly accelerated in recent years. By embedding fibre optic sensors in structures (e.g. buildings, bridges and pipelines) it is possible to obtain real time data on structural changes such as stress or strain. Engineers use monitoring data to detect deviations from a structure's original design performance in order to optimise the operation, repair and maintenance of a structure over time. Fibre Optic Methods for Structural Health Monitoring is organised as a step-by-step guide to implementing a monitoring system Structural analysis (Engineering)Fiber opticsOptoelectronicsElectronic books.Structural analysis (Engineering)Fiber optics.Optoelectronics.624.1/71624.171Glišić Branko1975-882833Inaudi Daniele882834MiAaPQMiAaPQMiAaPQBOOK9910144726303321Fibre optic methods for structural health monitoring1972220UNINA