05289nam 2200625Ia 450 991014470440332120170810194925.01-280-85422-797866108542263-527-60795-13-527-60714-5(CKB)1000000000377580(EBL)482152(OCoLC)658579236(SSID)ssj0000170930(PQKBManifestationID)11177895(PQKBTitleCode)TC0000170930(PQKBWorkID)10235915(PQKB)10489169(MiAaPQ)EBC482152(EXLCZ)99100000000037758020050708d2006 uy 0engur|n|---|||||txtccrHigh temperature strain of metals and alloys[electronic resource] physical fundamentals /Valim LevitinWeinheim ;Chichester Wiley-VCH20061 online resource (181 p.)Description based upon print version of record.3-527-31338-9 Includes bibliographical references and index.High Temperature Strain of Metals and Alloys; Contents; Introduction; 1 Macroscopic Characteristics of Strain of Metallic Materials at High Temperatures; 2 The Experimental Equipment and the in situ X-ray Investigation Technique; 2.1 Experimental Installation; 2.2 Measurement Procedure; 2.3 Measurements of Structural Parameters; 2.4 Diffraction Electron Microscopy; 2.5 Amplitude of Atomic Vibrations; 2.6 Materials under Investigation; 2.7 Summary; 3 Structural Parameters in High-Temperature Deformed Metals; 3.1 Evolution of Structural Parameters; 3.2 Dislocation Structure3.3 Distances between Dislocations in Sub-boundaries3.4 Sub-boundaries as Dislocation Sources and Obstacles; 3.5 Dislocations inside Subgrains; 3.6 Vacancy Loops and Helicoids; 3.7 Total Combination of Structural Peculiarities of High-temperature Deformation; 3.8 Summary; 4 Physical Mechanism and Structural Model of Strain at High Temperatures; 4.1 Physical Model and Theory; 4.2 Velocity of Dislocations; 4.3 Dislocation Density; 4.4 Rate of the Steady-State Creep; 4.5 Effect of Alloying: Relationship between Creep Rate and Mean-Square Atomic Amplitudes4.6 Formation of Jogs. Low-Angle Sub-boundaries in f.c.c. and b.c.c. Crystal Lattices4.7 Significance of the Stacking Faults Energy; 4.8 Stability of Dislocation Sub-boundaries; 4.9 Scope of Application of the Theory; 4.10 Summary; 5 Simulation of the Evolution of Parameters during Deformation; 5.1 Parameters of the Physical Model; 5.2 Equations; 5.2.1 Strain Rate; 5.2.2 Change in the Dislocation Density; 5.2.3 The Dislocation Slip Velocity; 5.2.4 The Dislocation Climb Velocity; 5.2.5 The Dislocation Spacing in Sub-boundaries; 5.2.6 Variation of the Subgrain Size5.2.7 System of Differential Equations5.3 Results of Simulation: Changes in the Structural Parameters; 5.4 Density of Dislocations during Stationary Creep; 5.5 Summary; 6 High-temperature Deformation of Superalloys; 6.1 γ ́ Phase in Superalloys; 6.2 Changes in the Matrix of Alloys during Strain; 6.3 Interaction of Dislocations and Particles of the Hardening Phase; 6.4 Dependence of Creep Rate on Stress. The Average Length of the Activated Dislocation Segments; 6.5 Mechanism of Strain and the Creep Rate Equation; 6.6 Composition of the γ ́ Phase and Mean-square Amplitudes of Atomic Vibrations6.7 Influence of the Particle Size and Concentration6.8 The Prediction of Properties on the Basis of Integrated Databases; 6.9 Summary; 7 Single Crystals of Superalloys; 7.1 Effect of Orientation on Properties; 7.2 Deformation of Single-crystal Superalloys at Lower Temperatures and Higher Stress; 7.3 Deformation of Single-crystal Superalloys at Higher Temperatures and Lower Stress; 7.4 On the Composition of Superalloys; 7.5 Rafting; 7.6 Effect of Composition and Temperature on γ/γ ́ Misfit; 7.7 Other Creep Equations; 7.8 Summary; 8 High-temperature Deformation of Some Refractory Metals8.1 The Creep BehaviorCreep and fatigue are the most prevalent causes of rupture in superalloys, which are important materials for industrial usage, e.g. in engines and turbine blades in aerospace or in energy producing industries. As temperature increases, atom mobility becomes appreciable, affecting a number of metal and alloy properties. It is thus vital to find new characterization methods that allow an understanding of the fundamental physics of creep in these materials as well as in pure metals.Here, the author shows how new in situ X-ray investigations and transmission electron microscope studies lead toMetalsEffect of high temperatures onAlloysThermal propertiesElectronic books.MetalsEffect of high temperatures on.AlloysThermal properties.620.1617669.83Levitin Valim968016MiAaPQMiAaPQMiAaPQBOOK9910144704403321High temperature strain of metals and alloys2205991UNINA