05366nam 2200649 a 450 991014438070332120191204174428.01-282-12295-997866121229580-470-69770-90-470-69812-8(CKB)1000000000687219(EBL)470531(OCoLC)609849479(SSID)ssj0000354668(PQKBManifestationID)11298736(PQKBTitleCode)TC0000354668(PQKBWorkID)10314224(PQKB)11193401(MiAaPQ)EBC470531(PPN)223682861(EXLCZ)99100000000068721920090723d2008 uy 0engur|n|---|||||txtccrPrinciples and applications of thermal analysis[electronic resource] /edited by Paul GabbottOxford Blackwell Pub.20081 online resource (484 p.)Description based upon print version of record.1-4051-3171-3 Includes bibliographical references and index.Principles and Applications of Thermal Analysis; Contents; Abbreviations; List of Contributors; 1 A Practical Introduction to Differential Scanning Calorimetry; 1.1 Introduction; 1.2 Principles of DSC and types of measurements made; 1.2.1 A definition of DSC; 1.2.2 Heat low measurements; 1.2.3 Specific heat (Cp); 1.2.4 Enthalpy; 1.2.5 Derivative curves; 1.3 Practical issues; 1.3.1 Encapsulation; 1.3.2 Temperature range; 1.3.3 Scan rate; 1.3.4 Sample size; 1.3.5 Purge gas; 1.3.6 Sub-ambient operation; 1.3.7 General practical points; 1.3.8 Preparing power compensation systems for use1.4 Calibration1.4.1 Why calibrate; 1.4.2 When to calibrate; 1.4.3 Checking performance; 1.4.4 Parameters to be calibrated; 1.4.5 Heat low calibration; 1.4.6 Temperature calibration; 1.4.7 Temperature control (furnace) calibration; 1.4.8 Choice of standards; 1.4.9 Factors affecting calibration; 1.4.10 Final comments; 1.5 Interpretation of data; 1.5.1 The instrumental transient; 1.5.2 Melting; 1.5.3 The glass transition; 1.5.4 Factors affecting Tg; 1.5.5 Calculating and assigning Tg; 1.5.6 Enthalpic relaxation; 1.5.7 Tg on cooling; 1.5.8 Methods of obtaining amorphous material; 1.5.9 Reactions1.5.10 Guidelines for interpreting data1.6 Oscillatory temperature profiles; 1.6.1 Modulated temperature methods; 1.6.2 Stepwise methods; 1.7 DSC design; 1.7.1 Power compensation DSC; 1.7.2 Heat flux DSC; 1.7.3 Differential thermal analysis DTA; 1.7.4 Differential photocalorimetry DPC; 1.7.5 High-pressure cells; Appendix: standard DCS methods; References; 2 Fast Scanning DSC; 2.1 Introduction; 2.2 Proof of performance; 2.2.1 Effect of high scan rates on standards; 2.2.2 De.nition of HyperDSCTM; 2.2.3 The initial transient; 2.2.4 Fast cooling rates; 2.3 Benefits of fast scanning rates2.3.1 Sensitivity2.3.2 Measurement of sample properties without unwanted annealing effects; 2.3.3 Separate overlapping events based on different kinetics; 2.3.4 Speed of analysis; 2.4 Application to polymers; 2.4.1 Melting and crystallisation processes; 2.4.2 Comparative studies; 2.4.3 Forensic studies; 2.4.4 Effect of heating rate on the sensitivity of the glass transition; 2.4.5 Effect of heating rate on the temperature of the glass transition; 2.4.6 Effect of heating rate on Tg of annealed materials (and enthalpic relaxation phenomena); 2.5 Application to pharmaceuticals2.5.1 Purity of polymorphic form2.5.2 Identifying polymorphs; 2.5.3 Determination of amorphous content of materials; 2.5.4 Measurements of solubility; 2.6 Application to water-based solutions and the effect of moisture; 2.6.1 Measurement of Tg in frozen solutions and suspensions; 2.6.2 Material affected by moisture; 2.7 Practical aspects of scanning at fast rates; 2.7.1 Purge gas; 2.7.2 Sample pans; 2.7.3 Sample size; 2.7.4 Scan rate; 2.7.5 Instrumental settings; 2.7.6 Cleanliness; 2.7.7 Getting started; References; 3 Thermogravimetric Analysis; 3.1 Introduction3.2 Design and measuring principlePrinciples and Applications of Thermal Analysis is written by manufacturers and experienced users of thermal techniques. It provides sound practical instruction on using the techniques and gives an up-to-date account of the principle industrial applications. By covering basic thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) including Fast Scanning DSC, together with dynamic mechanical analysis (DMA /TMA) methods, then discussing industrial applications, the book serves as an ideal introduction to the technology for new users. With a strong focus on practical issues, thThermal analysisColorimetric analysisThermal analysisIndustrial applicationsThermal analysis.Colorimetric analysis.Thermal analysisIndustrial applications.543.26543/.26Gabbott Paul969043MiAaPQMiAaPQMiAaPQBOOK9910144380703321Principles and applications of thermal analysis2201525UNINA