03332nam 2200625 450 991014397050332120210216161423.01-281-92068-197866119206853-540-77676-110.1007/978-3-540-77676-5(CKB)1000000000546078(EBL)3063752(SSID)ssj0000291245(PQKBManifestationID)11213759(PQKBTitleCode)TC0000291245(PQKBWorkID)10249143(PQKB)10712624(DE-He213)978-3-540-77676-5(MiAaPQ)EBC3063752(MiAaPQ)EBC6351867(PPN)132864010(EXLCZ)99100000000054607820210216d2008 uy 0engur|n|---|||||txtccrChaos in structural mechanics /J. Awrejcewicz, V. A. Krysko1st ed. 2008.Berlin, Germany :Springer,[2008]©20081 online resource (423 p.)Springer complexityDescription based upon print version of record.3-540-77675-3 Includes bibliographical references and index.Theory of Non-homogeneous Shells -- Static Instability of Rectangular Plates -- Vibrations of Rectangular Shells -- Dynamic Loss of Stability of Rectangular Shells -- Stability of a Closed Cylindrical Shell Subjected to an Axially Non-symmetrical Load -- Composite Shells -- Interaction of Elastic Shells and a Moving Body -- Chaotic Vibrations of Sectoria Shells -- Scenarios of Transition from Harmonic to Chaotic Motion -- Dynamics of Closed Flexible Cylindrical Shells -- Controlling Time-Spatial Chaos of Cylindrical Shells -- Chaotic Vibrations of Flexible Rectangular Shells -- Determination of Three-layered Non-linear Uncoupled Beam Dynamics with Constraints -- Bifurcation and Chaos of Dissipative Non-linear Mechanical Systems of Multi-layer Sandwich Beams -- Nonlinear Vibrations of the Euler-Bernoulli Beam Subjected to Transversal Load and Impact Actions.This volume introduces and reviews novel theoretical approaches to modeling strongly nonlinear behaviour of either individual or interacting structural mechanical units such as beams, plates and shells or composite systems thereof. The approach draws upon the well-established fields of bifurcation theory and chaos and emphasizes the notion of control and stability of objects and systems the evolution of which is governed by nonlinear ordinary and partial differential equations. Computational methods, in particular the Bubnov-Galerkin method, are thus described in detail.Springer complexity.Chaotic behavior in systemsStructural analysis (Engineering)Mathematical modelsChaotic behavior in systems.Structural analysis (Engineering)Mathematical models.624.17015118Awrejcewicz J(Jan),59397Krysʹko V. A(Vadim Anatolʹevich),1937-MiAaPQMiAaPQMiAaPQBOOK9910143970503321Chaos in structural mechanics2430773UNINA