05829nam 2200757 a 450 991014331720332120210209155238.01-280-84773-597866108477300-470-61206-10-470-39469-21-84704-595-2(CKB)1000000000335545(EBL)700748(OCoLC)769341534(SSID)ssj0000139071(PQKBManifestationID)11154877(PQKBTitleCode)TC0000139071(PQKBWorkID)10105598(PQKB)11400732(MiAaPQ)EBC700748(CaSebORM)9781905209453(MiAaPQ)EBC261988(Au-PeEL)EBL261988(OCoLC)501313820(EXLCZ)99100000000033554520060627d2006 uy 0engur|n|---|||||txtccrDigital filters design for signal and image processing[electronic resource] /edited by Mohamed Najim1st editionNewport Beach, CA ISTE Ltd.c20061 online resource (387 p.)Digital signal and image processing seriesDescription based upon print version of record.1-905209-45-2 Includes bibliographical references and index.Digital Filters Design for Signal and Image Processing; Table of Contents; Introduction; Chapter 1. Introduction to Signals and Systems; 1.1. Introduction; 1.2. Signals: categories, representations and characterizations; 1.2.1. Definition of continuous-time and discrete-time signals; 1.2.2. Deterministic and random signals; 1.2.3. Periodic signals; 1.2.4. Mean, energy and power; 1.2.5. Autocorrelation function; 1.3. Systems; 1.4. Properties of discrete-time systems; 1.4.1. Invariant linear systems; 1.4.2. Impulse responses and convolution products; 1.4.3. Causality1.4.4. Interconnections of discrete-time systems1.5. Bibliography; Chapter 2. Discrete System Analysis; 2.1. Introduction; 2.2. The z-transform; 2.2.1. Representations and summaries; 2.2.2. Properties of the z-transform; 2.2.2.1. Linearity; 2.2.2.2. Advanced and delayed operators; 2.2.2.3. Convolution; 2.2.2.4. Changing the z-scale; 2.2.2.5. Contrasted signal development; 2.2.2.6. Derivation of the z-transform; 2.2.2.7. The sum theorem; 2.2.2.8. The final-value theorem; 2.2.2.9. Complex conjugation; 2.2.2.10. Parseval's theorem; 2.2.3. Table of standard transform; 2.3. The inverse z-transform2.3.1. Introduction2.3.2. Methods of determining inverse z-transforms; 2.3.2.1. Cauchy's theorem: a case of complex variables; 2.3.2.2. Development in rational fractions; 2.3.2.3. Development by algebraic division of polynomials; 2.4. Transfer functions and difference equations; 2.4.1. The transfer function of a continuous system; 2.4.2. Transfer functions of discrete systems; 2.5. Z-transforms of the autocorrelation and intercorrelation functions; 2.6. Stability; 2.6.1. Bounded input, bounded output (BIBO) stability; 2.6.2. Regions of convergence; 2.6.2.1. Routh's criterion2.6.2.2. Jury's criterionChapter 3. Frequential Characterization of Signals and Filters; 3.1. Introduction; 3.2. The Fourier transform of continuous signals; 3.2.1. Summary of the Fourier series decomposition of continuous signals; 3.2.1.1. Decomposition of finite energy signals using an orthonormal base; 3.2.1.2. Fourier series development of periodic signals; 3.2.2. Fourier transforms and continuous signals; 3.2.2.1. Representations; 3.2.2.2. Properties; 3.2.2.3. The duality theorem; 3.2.2.4. The quick method of calculating the Fourier transform; 3.2.2.5. The Wiener-Khintchine theorem3.2.2.6. The Fourier transform of a Dirac comb3.2.2.7. Another method of calculating the Fourier series development of a periodic signal; 3.2.2.8. The Fourier series development and the Fourier transform; 3.2.2.9. Applying the Fourier transform: Shannon's sampling theorem; 3.3. The discrete Fourier transform (DFT); 3.3.1. Expressing the Fourier transform of a discrete sequence; 3.3.2. Relations between the Laplace and Fourier z-transforms; 3.3.3. The inverse Fourier transform; 3.3.4. The discrete Fourier transform; 3.4. The fast Fourier transform (FFT)3.5. The fast Fourier transform for a time/frequency/energy representation of a non-stationary signalDealing with digital filtering methods for 1-D and 2-D signals, this book provides the theoretical background in signal processing, covering topics such as the z-transform, Shannon sampling theorem and fast Fourier transform. An entire chapter is devoted to the design of time-continuous filters which provides a useful preliminary step for analog-to-digital filter conversion.Attention is also given to the main methods of designing finite impulse response (FIR) and infinite impulse response (IIR) filters. Bi-dimensional digital filtering (image filtering) is investigated and a study on stabiDigital signal and image processing series.Electric filters, DigitalSignal processingDigital techniquesImage processingDigital techniquesElectronic books.Electric filters, Digital.Signal processingDigital techniques.Image processingDigital techniques.600621.3822Najim Mohamed856048Najim Mohamed856048MiAaPQMiAaPQMiAaPQBOOK9910143317203321Digital filters design for signal and image processing2154808UNINA