05662nam 2200709 a 450 991014160120332120170816123757.01-118-60275-71-118-60276-51-118-60280-3(CKB)2670000000336696(EBL)1124672(OCoLC)828298914(SSID)ssj0000831910(PQKBManifestationID)11462092(PQKBTitleCode)TC0000831910(PQKBWorkID)10881243(PQKB)10854713(OCoLC)828424625(MiAaPQ)EBC1124672(CaSebORM)9781118602805(EXLCZ)99267000000033669620110916d2011 uy 0engur|n|---|||||txtccrFerroelectric dielectrics integrated on silicon[electronic resource] /edited by Emmanuel Defay1st editionLondon ISTE Ltd. ;Hoboken, N.J. John Wiley20111 online resource (464 p.)ISTEAdapted and updated from: Dielectriques ferroelectriques integres sur silicium, published in France by Hermes Science/Lavoisier, 2011.1-84821-313-1 Includes bibliographical references and index.Cover; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. The Thermodynamic Approach; 1.1. Background; 1.2. The functions of state; 1.3. Linear equations, piezoelectricity; 1.4. Nonlinear equations, electrostriction; 1.5. Thermodynamic modeling of the ferroelectric-paraelectricphase transition; 1.5.1. Assumption on the elastic Gibbs energy; 1.5.2. Second-order transition; 1.5.3. Effect of stress; 1.5.4. First-order transition; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Stress Effect on Thin Films; 2.1. Introduction; 2.2. Modeling the system under consideration2.3. Temperature-misfit strain phase diagrams for monodomain films2.3.1. Phase diagram construction from the Landau-Ginzburg-Devonshire theory; 2.3.2. Calculations limitations; 2.4. Domain stability map; 2.4.1. Presentation and description of the framework of study; 2.4.2. Main contributions to the total energy of a film; 2.4.3. Influence of thickness; 2.4.4. Macroscopic elastic energy for each type of tetragonal domain; 2.4.5. Indirect interaction energy; 2.4.6. Domain structures at equilibrium; 2.4.7. Domain stability map; 2.5. Temperature-misfit strain phase diagram for polydomain films2.6. Discussion of the nature of the "misfit strain"2.6.1. Mechanical misfit strain; 2.6.2. Thermodynamic misfit strain; 2.6.3. As an illustration; 2.7. Conclusion; 2.8. Experimental validation of phase diagrams: state of the art; 2.9. Case study; 2.10. Results; 2.10.1. Evolution of the lattice parameters; 2.10.2. Associated stresses and strains; 2.11. Comparison between the experimental data and the temperature-misfit strain phase diagrams; 2.11.1. Thin film of PZT; 2.11.2. Thin layer of PbTiO3; 2.12. Conclusion; 2.13. Bibliography; Chapter 3. Deposition and Patterning Technologies3.1. Deposition method3.1.1. Cathodic sputtering; 3.1.2. Ion beam sputtering; 3.1.3. Pulsed laser deposition; 3.1.4. The sol-gel process; 3.1.5. The MOCVD; 3.1.6. Molecular beam epitaxy; 3.2. Etching; 3.2.1. Wet etching; 3.2.2. Dry etching; 3.3. Contamination; 3.4. Monocrystalline thin-film transfer; 3.4.1. Smart CutTM technology; 3.4.2. Bonding/thinning; 3.4.3. Interest in the material in a thin layer; 3.4.4. State of the art of the domain/applications; 3.4.5. An exemplary implementation; 3.5. Design of experiments; 3.5.1. The assumptions; 3.5.2. Reproducibility3.5.3. How can we reduce the number of experiments?3.5.4. A DOE example: PZT RF magnetron sputtering deposition; 3.6. Conclusion; 3.7. Bibliography; Chapter 4. Analysis Through X-ray Diffraction of Polycrystalline Thin Films; 4.1. Introduction; 4.2. Some reminders of X-ray diffraction and crystallography; 4.2.1. Nature of X-rays; 4.2.2. X-ray scattering and diffraction; 4.3. Application to powder or polycrystalline thin-films; 4.4. Phase analysis by X-ray diffraction; 4.4.1. Grazing incidence diffraction; 4.4.2. De-texturing; 4.4.3. Quantitative analysis4.5. Identification of coherent domain sizes of diffraction and micro-strainsThis book describes up-to-date technology applied to high-K materials for More Than Moore applications, i.e. microsystems applied to microelectronics core technologies.After detailing the basic thermodynamic theory applied to high-K dielectrics thin films including extrinsic effects, this book emphasizes the specificity of thin films. Deposition and patterning technologies are then presented. A whole chapter is dedicated to the major role played in the field by X-Ray Diffraction characterization, and other characterization techniques are also described such as Radio frequency characterizatISTEFerroelectric thin filmsSiliconElectric propertiesElectric batteriesCorrosionElectronic books.Ferroelectric thin films.SiliconElectric properties.Electric batteriesCorrosion.621.3815/2621.38152Defaÿ EmmanuelDefaÿ Emmanuel863199MiAaPQMiAaPQMiAaPQBOOK9910141601203321Ferroelectric dielectrics integrated on silicon1926912UNINA02099nam 2200481 a 450 991069929710332120230902161545.0(CKB)5470000002400930(OCoLC)469232495(EXLCZ)99547000000240093020091124d1996 ua 0engurbn|||||||||txtrdacontentcrdamediacrrdacarrierA framework for ecosystem management in the interior Columbia Basin and portions of the Klamath and Great Basins[electronic resource] /Richard W. Haynes, Russell T. Graham, and Thomas M. Quigley, technical editorsPortland, Or. (333 S.W. First Ave., P.O. Box 3890. Portland 97208-3890) :U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station,1996.1 online resource (iv, 68 pages) illustrations, mapGeneral technical report PNW ;GTR-374Title from PDF title screen (PNRS, viewed Aug. 24, 2009)."Interior Columbia Basin Ecosystem Management Project.""Bureau of Land Management.""June 1996."Includes bibliographical references (pages 39-44).General technical report PNW ;374.Ecosystem managementColumbia River WatershedEcosystem managementKlamath River Watershed (Or. and Calif.)Ecosystem managementGreat BasinEcosystem managementEcosystem managementEcosystem managementHaynes Richard W1381007Graham Russell T1386139Quigley Thomas M(Thomas Milton)1402414Pacific Northwest Research Station (Portland, Or.)United States.Bureau of Land Management.GPOGPOBOOK9910699297103321A framework for ecosystem management in the interior Columbia Basin and portions of the Klamath and Great Basins3549319UNINA