05679nam 2200745 450 991014148630332120210209150738.01-118-60035-51-299-18742-01-118-60048-71-118-60053-3(CKB)2670000000327664(EBL)1120686(OCoLC)827207620(SSID)ssj0000831539(PQKBManifestationID)11453263(PQKBTitleCode)TC0000831539(PQKBWorkID)10872837(PQKB)11375517(MiAaPQ)EBC4471381(CaSebORM)9781118600535(MiAaPQ)EBC1120686(Au-PeEL)EBL1120686(CaPaEBR)ebr11098876(CaONFJC)MIL449992(PPN)185060528(EXLCZ)99267000000032766420091008d2010 uy| 0engur|n|---|||||txtccrDiscrete stochastic processes and optimal filtering /Jean-Claude Bertein, Roger Ceschi2nd ed.London, United Kingdom :ISTE ;Hoboken, New Jersey :John Wiley,2010.1 online resource (301 p.)Digital signal and image processing seriesTranslated from French.1-84821-181-3 Includes bibliographical references and index.Cover; Discrete Stochastic Processes and Optimal Filtering; Title Page; Copyright Page; Table of Contents; Preface; Introduction; Chapter 1. Random Vectors; 1.1. Definitions and general properties; 1.2. Spaces L1 (dP) and L2 (dP); 1.2.1. Definitions; 1.2.2. Properties; 1.3. Mathematical expectation and applications; 1.3.1. Definitions; 1.3.2. Characteristic functions of a random vector; 1.4. Second order random variables and vectors; 1.5. Linear independence of vectors of L2 (dP); 1.6. Conditional expectation (concerning random vectors with density function); 1.7. Exercises for Chapter 1Chapter 2. Gaussian Vectors2.1. Some reminders regarding random Gaussian vectors; 2.2. Definition and characterization of Gaussian vectors; 2.3. Results relative to independence; 2.4. Affine transformation of a Gaussian vector; 2.5. The existence of Gaussian vectors; 2.6. Exercises for Chapter 2; Chapter 3. Introduction to Discrete Time Processes; 3.1. Definition; 3.2. WSS processes and spectral measure; 3.2.1. Spectral density; 3.3. Spectral representation of a WSS process; 3.3.1. Problem; 3.3.2. Results; 3.4. Introduction to digital filtering; 3.5. Important example: autoregressive process3.6. Exercises for Chapter 3Chapter 4. Estimation; 4.1. Position of the problem; 4.2. Linear estimation; 4.3. Best estimate - conditional expectation; 4.4. Example: prediction of an autoregressive process AR (1); 4.5. Multivariate processes; 4.6. Exercises for Chapter 4; Chapter 5. The Wiener Filter; 5.1. Introduction; 5.1.1. Problem position; 5.2. Resolution and calculation of the FIR filter; 5.3. Evaluation of the least error; 5.4. Resolution and calculation of the IIR filter; 5.5. Evaluation of least mean square error; 5.6. Exercises for Chapter 5Chapter 6. Adaptive Filtering: Algorithm of the Gradient and the LMS6.1. Introduction; 6.2. Position of problem; 6.3. Data representation; 6.4. Minimization of the cost function; 6.4.1. Calculation of the cost function; 6.5. Gradient algorithm; 6.6. Geometric interpretation; 6.7. Stability and convergence; 6.8. Estimation of gradient and LMS algorithm; 6.8.1. Convergence of the algorithm of the LMS; 6.9. Example of the application of the LMS algorithm; 6.10. Exercises for Chapter 6; Chapter 7. The Kalman Filter; 7.1. Position of problem; 7.2. Approach to estimation; 7.2.1. Scalar case7.2.2. Multivariate case7.3. Kalman filtering; 7.3.1. State equation; 7.3.2. Observation equation; 7.3.3. Innovation process; 7.3.4. Covariance matrix of the innovation process; 7.3.5. Estimation; 7.3.6. Riccati's equation; 7.3.7. Algorithm and summary; 7.4. Exercises for Chapter 7; 7.5. Appendices; 7.6. Examples treated using Matlab software; Table of Symbols and Notations; Bibliography; IndexOptimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which are used in relation to non-stationary signals. Exercises with solutions feature in each chapter to demonstrate the practical application of these ideas using MATLAB.Digital signal and image processing series.Signal processingMathematicsDigital filters (Mathematics)Stochastic processesSignal processingMathematics.Digital filters (Mathematics)Stochastic processes.621.382/2621.3822Bertein Jean-Claude888976Ceschi RogerMiAaPQMiAaPQMiAaPQBOOK9910141486303321Discrete stochastic processes and optimal filtering1985745UNINA03416nam 2200637 450 991080738930332120230814223108.03-11-056092-53-11-056381-910.1515/9783110563818(CKB)4100000005043727(MiAaPQ)EBC5157718(DE-B1597)487516(OCoLC)1025379090(DE-B1597)9783110563818(Au-PeEL)EBL5157718(CaPaEBR)ebr11605183(EXLCZ)99410000000504372720180921d2018 uy 0gerurcnu||||||||txtrdacontentcrdamediacrrdacarrierPräteritumschwund im Deutschen Dokumentation und Erklärung eines Verdrängungsprozesses /Hanna FischerBerlin ;Boston :De Gruyter,[2018]©20181 online resource (450 pages)Studia Linguistica Germanica ;Band 1323-11-056070-4 Includes bibliographical references and index.Frontmatter -- Vorwort -- Inhalt -- 1. Einleitung -- 2. Die Dokumentation des Präteritumschwunds -- 3. Die Erklärung des Präteritumschwunds -- 4. Ergebnisse der Arbeit und Ausblick -- 5. Verzeichnisse -- RegisterSeit 130 Jahren bemüht sich die sprachwissenschaftliche Forschung vergeblich um eine plausible Erklärung des sog. "Präteritumschwunds": dem Verlust der Präteritumformen im gesprochenen Deutsch. Die vorliegende Arbeit setzt an diesem Desiderat an und führt in innovativer Weise Theoriebildung, Erkenntnisse und Methoden aus unterschiedlichen linguistischen Disziplinen - Dialektologie, Sprachgeschichte, Grammatikforschung, Tempus & Aspekt-Forschung - ertragreich zusammen. Die Studie liefert zum einen eine umfassende Dokumentation des Präteritumschwunds in Raum und Zeit. Dazu werden in Form einer Metanalyse zahlreiche Dialektgrammatiken, Sprachkarten und Korpusstudien ausgewertet und zu einem Gesamtbild zusammengefügt. Die gestaffelte Verteilung von Präteritumformen im Raum sowie die historische Entwicklung lassen auf eine sukzesssive und prinzipiengeleitete Verdrängung der Präteritumformen durch die expandierende Perfektform schließen. Zum anderen wird auf Basis von modernen theoretischen Konzepten eine Erklärung erarbeitet, die neben der Ursache des Prozesses auch weitere Faktoren des Präteritumschwunds bestimmt und eine europäische Perspektive eröffnet.Studia linguistica Germanica ;Band 132.German languageTenseGerman languageVerbFOREIGN LANGUAGE STUDY / GermanbisacshLANGUAGE ARTS & DISCIPLINES / Linguistics / GeneralbisacshAspect.Present Perfect.Preterit.Tense.German languageTense.German languageVerb.FOREIGN LANGUAGE STUDY / German.LANGUAGE ARTS & DISCIPLINES / Linguistics / General.435/.62FOR009000LAN009000bisacshFischer Hanna1983-1633759MiAaPQMiAaPQMiAaPQBOOK9910807389303321Präteritumschwund im Deutschen3973659UNINA