05600nam 2200745Ia 450 991014331500332120210209153746.01-280-84767-097866108476790-470-61247-90-470-39460-91-84704-579-0(CKB)1000000000335553(EBL)700739(OCoLC)769341525(SSID)ssj0000200093(PQKBManifestationID)11201614(PQKBTitleCode)TC0000200093(PQKBWorkID)10215553(PQKB)10276325(MiAaPQ)EBC700739(MiAaPQ)EBC261978(Au-PeEL)EBL261978(OCoLC)936813912(EXLCZ)99100000000033555320070129d2007 uy 0engur|n|---|||||txtccrMechanical vibrations[electronic resource] active and passive control /Tomasz Krysinski, François MalburetLondon ;Newport Beach, CA ISTEc20071 online resource (391 p.)ISTE ;v.103Description based upon print version of record.1-905209-29-0 Includes bibliographical references and index.Mechanical Vibrations; Table of Contents; Foreword; Preface; Part I. Sources of Vibrations; Chapter 1. Unbalance and Gyroscopic Effects; 1.1. Introduction; 1.1.1. Physico-mathematical model of a rotating system; 1.1.2. Formation of equations and analysis; 1.2. Theory of balancing; 1.2.1. Balancing machine or "balancer"; 1.2.1.1. The soft-bearing machine; 1.2.1.2. The hard-bearing machine; 1.2.2. Balancing in situ; 1.2.2.1. The method of separate planes; 1.2.2.2. The method of simultaneous planes - influence coefficients; 1.2.3. Example of application: the main rotor of a helicopter1.2.3.1. Bench test phase on the ground1.2.3.2. Test phase on a helicopter in flight; 1.3. Influence of shaft bending; 1.3.1. The notion of critical speed; 1.3.2. Forward precession of the flexible shaft; 1.3.2.1. Subcritical speed (: Ω<ωcr); 1.3.2.2. Resonance (: Ω<ωcr); 1.3.2.3. Supercritical speed (: Ω<ωcr); 1.3.3. Balancing flexible shafts; 1.3.4. Example of application: transmission shaft of the tail rotor of a helicopter; 1.4. Gyroscopic effects; 1.4.1. Forward or backward motion; 1.4.2. Equations of motion; 1.4.2.1. Natural angular frequencies (shaft off motion)1.4.2.2. Critical speeds during forward precession1.4.2.3. Critical speeds during retrograde precession; Chapter 2. Piston Engines; 2.1. Introduction; 2.2. Excitations generated by a piston engine; 2.2.1. Analytic determination of an engine torque; 2.2.2. Engine excitations on the chassis frame; 2.2.2.1. Knocking load; 2.2.2.2. Pitch torque; 2.2.2.3. Review of actions for a four phase cylinder engine; 2.2.3. The notion of engine balancing; 2.2.3.1. Balancing the knocking loads; 2.2.3.2. Balancing the galloping torque; 2.3. Line shafting tuning; 2.3.1. The notion of tuning2.3.2. Creation of the equations2.3.3. Line shafting optimization; 2.3.3.1. Results for a non-optimized line shafting; 2.3.3.2. Results for an optimized line shafting; Chapter 3. Dynamics of a Rotor; 3.1. Introduction; 3.2. Description of the blade/hub relationship; 3.2.1. Some historical data; 3.2.2. Hinge link of the blade and the hub; 3.2.2.1. Formation of the equations for blade motion; 3.2.2.2. Homokinetic rotor; 3.3. Rotor technologies; 3.3.1. Articulated rotors; 3.3.1.1. Conventional articulated rotors; 3.3.1.2. Starflex® and Spheriflex® rotors; 3.3.2. Hingeless rotors3.3.3. Hingeless rotor3.4. Influence of alternate aerodynamic loads; 3.4.1. Load characterization; 3.4.1.1. Loads on a blade; 3.4.1.2. Dynamic response of a blade; 3.4.1.3. Loads transmitted by a mode i; 3.4.2. Analysis of loads transmitted to the rotor hub; 3.4.2.1. Loads transmitted to the rotor; 3.4.2.2. Synthesis of rotor loads on the rotor mast; 3.4.3. Dynamic optimization of a blade; 3.4.3.1. Introduction; 3.4.3.2. Study of the example of an optimized blade; 3.4.3.3. Contribution of the second flapping mode; Chapter 4. Rotor Control; 4.1. Introduction; 4.2. Blade motions4.2.1. Flapping equation - general caseFor all rotational machines, the analysis of dynamic stresses and the resulting vibrations is an important subject. When it comes to helicopters and piston engines, this analysis becomes crucial. From the design of parts working under stress to the reduction of the vibration levels, the success of a project lies mainly in the hands of the dynamicists. The authors have combined their talents and experience to provide a complete presentation on the issues involved. Part one describes, in concrete terms, the main dynamic phenomena and how they can be observed in reality. Part two presents inforISTERotorsVibrationDamping (Mechanics)Structural control (Engineering)Electronic books.RotorsVibration.Damping (Mechanics)Structural control (Engineering)620.3621.8/11621.811Krysinski Tomasz927361Malburet François927362MiAaPQMiAaPQMiAaPQBOOK9910143315003321Mechanical vibrations2083587UNINA01473oam 2200457zu 450 991014090640332120241212220030.097814244746911424474698(CKB)2670000000054085(SSID)ssj0000452506(PQKBManifestationID)12145960(PQKBTitleCode)TC0000452506(PQKBWorkID)10468513(PQKB)10816221(EXLCZ)99267000000005408520160829d2010 uy engtxtccr2010 5th International Conference on Ultrawideband and Ultrashort Impulse Signals[Place of publication not identified]I E E E2010Bibliographic Level Mode of Issuance: Monograph9781424474707 1424474701 Ultra-wideband radarCongressesSignal processingCongressesLaser pulses, UltrashortCongressesElectromagnetic pulseCongressesUltra-wideband radarSignal processingLaser pulses, UltrashortElectromagnetic pulseIEEE StaffInstitute of Electrical and Electronics Engineers.PQKBPROCEEDING99101409064033212010 5th International Conference on Ultrawideband and Ultrashort Impulse Signals2512741UNINA