05716nam 2200721 450 991014050610332120200520144314.01-118-92593-91-118-92590-41-118-92591-2(CKB)2670000000569500(EBL)1791965(OCoLC)891448019(SSID)ssj0001348485(PQKBManifestationID)11888036(PQKBTitleCode)TC0001348485(PQKBWorkID)11396395(PQKB)10352968(MiAaPQ)EBC1791965(DLC) 2014030067(Au-PeEL)EBL1791965(CaPaEBR)ebr10943656(CaONFJC)MIL647928(EXLCZ)99267000000056950020141010h20142014 uy 0engur|n|---|||||txtrdacontentcrdamediacrWave propagation in drilling, well logging, and reservoir applications /Wilson C. Chin ; Kris Hackerott, cover designHoboken, New Jersey :Scrivener Publishing,2014.©20141 online resource (458 p.)Advances in Petroleum EngineeringDescription based upon print version of record.1-118-92589-0 1-322-16671-4 Includes bibliographical references at the end of each chapters and index.Cover; Title Page; Copyright Page; Contents; Preface; Acknowledgements; 1 Overview and Fundamental Ideas; 1.1 The Classical Wave Equation; 1.1.1 Fundamental properties; 1.1.2 Reflection properties; 1.1.2.1 Example 1-1. Rigid end termination; 1.1.2.2 Example 1-2. Stress-free end; 1.1.2.3 Note on acoustics; 1.2 Fundamental Representation; 1.2.1 Taylor series; 1.2.2 Fourier series; 1.3 Separation of Variables and Eigenfunction Expansions; 1.3.1 Example 1-3. String with pinned ends and general initial conditions; 1.3.2 Example 1-4. String with distributed forces1.3.3 Example 1-5. Alternative boundary conditions1.3.4 Example 1-6. Mixed boundary conditions; 1.3.5 Example 1-7. Problems without initial conditions; 1.3.5.1 Example 1-7a. Naive approach; 1.3.5.2 Example 1-7b. Correct approach; 1.3.5.3 Example 1-7c. Faster approach; 1.3.6 Example 1-8. Dissipative wave solution; 1.4 Standing Versus Propagating Waves; 1.4.1 Standing waves; 1.4.2 Propagating waves; 1.4.3 Combined standing and propagating waves; 1.4.4 Characterizing propagating waves; 1.5 Laplace Transforms; 1.5.1 Wave equation derivation; 1.5.2 Example 1-9. String falling under its own weight1.5.3 Example 1-10. Semi-infinite string with a general end support1.5.3.1 Example 1-10a. Rectangular pulse; 1.5.3.2 Example 1-10b. Impulse response; 1.5.3.3 Example 1-10c. Incident sinusoidal wavetrain; 1.6 Fourier Transforms; 1.6.1 Example 1-11. Propagation of an initially static disturbance; 1.6.2 Example 1-12. Directional properties, special wave; 1.7 External Forces Versus Boundary Conditions; 1.7.1 Single point force; 1.7.2 Properties of point loads; 1.7.2.1 Example 1-13. Boundary conditions versus forces; 1.7.2.2 Couples or dipoles; 1.7.2.3 Multiple forces and higher order moments1.7.2.4 Symmetries and anti-symmetries1.7.2.5 Impulse response; 1.7.2.6 On the subtle meaning of impulse; 1.7.2.7 Example 1-14. Incorrect use of impulse response; 1.7.2.8 Additional models; 1.7.2.9 Other delta function properties; 1.8 Point Force and Dipole Wave Excitation; 1.8.1 Example 1-15. Finite string excited by a time-varying concentrated point force; 1.8.2 Example 1-16. Finite string excited by a time-varying point dipole (i.e., a force couple); 1.8.3 Example 1-17. Splitting of an applied initial disturbance; 1.9 First-Order Partial Differential Equations; 1.10 References2 Kinematic Wave Theory2.1 Whitham's Theory in Nondissipative Media; 2.1.1 Uniform media; 2.1.2 Example 2-1. Transverse beam vibrations; 2.1.3 Example 2-2. Simple longitudinal oscillations; 2.1.4 Example 2-3. Asymptotic stationary phase expansion; 2.1.5 Simple consequences of KWT; 2.1.6 Nonuniform media; 2.1.7 Example 2-4. Numerical integration; 2.1.8 Ease of use is important to practical engineering; 2.2 Simple Attenuation Modeling; 2.2.1 The Q-model; 2.2.2 Relating Q to amplitude in space; 2.2.3 Relating Q to standing wave decay; 2.2.4 Kinematic wave generalization2.3 KWT in Homogeneous Dissipative MediaWave propagation is central to all areas of petroleum engineering, e.g., drilling vibrations, MWD mud pulse telemetry, swab-surge, geophysical ray tracing, ocean and current interactions, electromagnetic wave and sonic applications in the borehole, but rarely treated rigorously or described in truly scientific terms, even for a single discipline. Wilson Chin, an MIT and Caltech educated scientist who has consulted internationally, provides an integrated, comprehensive, yet readable exposition covering all of the cited topics, offering insights, algorithms and validated methods never before puAdvances in Petroleum EngineeringGeophysical well loggingSeismic reflection methodWave-motion, Theory ofGeophysical well logging.Seismic reflection method.Wave-motion, Theory of.622/.1828Chin Wilson C.860858Hackerott KrisMiAaPQMiAaPQMiAaPQBOOK9910140506103321Wave propagation in drilling, well logging, and reservoir applications1921027UNINA