04919nam 2200685 450 991014045240332120230807210330.01-118-92153-41-118-92155-0(CKB)2670000000613974(EBL)2037987(SSID)ssj0001482077(PQKBManifestationID)11823372(PQKBTitleCode)TC0001482077(PQKBWorkID)11508252(PQKB)11627755(MiAaPQ)EBC4039880(MiAaPQ)EBC2037987(DLC) 2015006217(Au-PeEL)EBL4039880(CaPaEBR)ebr11113278(CaONFJC)MIL779419(OCoLC)903582747(EXLCZ)99267000000061397420150212d2015 uy| 0engur|n|---|||||txtccrHeterojunction bipolar transistors for circuit design microwave modelling and parameter extraction /Jianjun GaoSingapore :John Wiley and Sons, Incorporated,2015.1 online resource (278 p.)Description based upon print version of record.1-118-92154-2 1-118-92152-6 Includes bibliographical references and index.Title Page; Copyright Page; Contents; About the Author; Preface; Acknowledgments; Nomenclature; Chapter 1 Introduction; 1.1 Overview of Heterojunction Bipolar Transistors; 1.2 Modeling and Measurement for HBT; 1.3 Organization of This Book; References; Chapter 2 Basic Concept of Microwave Device Modeling; 2.1 Signal Parameters; 2.1.1 Low-Frequency Parameters; 2.1.2 S-Parameters; 2.2 Representation of Noisy Two-Port Network; 2.2.1 Noise Matrix; 2.2.2 Noise Parameters; 2.3 Basic Circuit Elements; 2.3.1 Resistance; 2.3.2 Capacitance; 2.3.3 Inductance; 2.3.4 Controlled Sources2.3.5 Ideal Transmission Line2.4 π- and T-Type Networks; 2.4.1 T-Type Network; 2.4.2 π-Type Network; 2.4.3 Relationship between π- and T-Type Networks; 2.5 Deembedding Method; 2.5.1 Parallel Deembedding; 2.5.2 Series Deembedding; 2.5.3 Cascading Deembedding; 2.6 Basic Methods of Parameter Extraction; 2.6.1 Determination of Capacitance; 2.6.2 Determination of Inductance; 2.6.3 Determination of Resistance; 2.7 Summary; References; Chapter 3 Modeling and Parameter Extraction Methods of Bipolar Junction Transistor; 3.1 PN Junction; 3.2 PN Junction Diode; 3.2.1 Basic Concept3.2.2 Equivalent Circuit Model3.2.3 Determination of Model Parameters; 3.3 BJT Physical Operation; 3.3.1 Device Structure; 3.3.2 The Modes of Operation; 3.3.3 Base-Width Modulation; 3.3.4 High Injection and Current Crowding; 3.4 Equivalent Circuit Model; 3.4.1 E-M Model; 3.4.2 G-P Model; 3.4.3 Noise Model; 3.5 Microwave Performance; 3.5.1 Transition Frequency; 3.5.2 Common-Emitter Configuration; 3.5.3 Common-Base Configuration; 3.5.4 Common-Collector Configuration; 3.5.5 Summary and Comparisons; 3.6 Summary; References; Chapter 4 Basic Principle of HBT; 4.1 Semiconductor Heterojunction4.2 HBT Device4.2.1 GaAs HBT; 4.2.2 InP HBT; 4.3 Summary; References; Chapter 5 Small-Signal Modeling and Parameter Extraction of HBT; 5.1 Small-Signal Circuit Model; 5.1.1 Pad Structure; 5.1.2 T-Type Circuit Model; 5.1.3 π-Type Circuit Model; 5.1.4 Unilateral Power Gain; 5.1.5 fT and fmax; 5.2 HBT Device Structure; 5.3 Extraction Method of PAD Capacitances; 5.3.1 Open Test Structure Method; 5.3.2 Pinch-Off Method; 5.4 Extraction Method of Extrinsic Inductances; 5.4.1 Short Test Structure Method; 5.4.2 Open-Collector Method; 5.5 Extraction Method of Extrinsic Resistance5.5.1 Z Parameter Method5.5.2 Cold-HBT Method; 5.5.3 Open-Collector Method; 5.6 Extraction Method of Intrinsic Resistance; 5.6.1 Direct Extraction Method; 5.6.2 Hybrid Method; 5.7 Semianalysis Method; 5.8 Summary; References; Chapter 6 Large-Signal Equivalent Circuit Modeling of HBT; 6.1 Linear and Nonlinear; 6.1.1 Definition; 6.1.2 Nonlinear Lumped Elements; 6.2 Large Signal and Small Signal; 6.3 Thermal Resistance; 6.3.1 Definition; 6.3.2 Equivalent Circuit Model; 6.3.3 Determination of Thermal Resistance; 6.4 Nonlinear HBT Modeling; 6.4.1 VBIC Model; 6.4.2 Agilent Model6.4.3 Macromodeling MethodBipolar transistorsHeterojunctionsElectronic circuit designMicrowave measurementsBipolar transistors.Heterojunctions.Electronic circuit design.Microwave measurements.621.3815/28Gao Jianjun1968-953190MiAaPQMiAaPQMiAaPQBOOK9910140452403321Heterojunction bipolar transistors for circuit design2279514UNINA