05906nam 2200649Ia 450 991013995950332120200520144314.00-470-68455-01-282-38499-697866123849980-470-68454-2(CKB)1000000000822278(StDuBDS)AH13350806(SSID)ssj0000340363(PQKBManifestationID)11256722(PQKBTitleCode)TC0000340363(PQKBWorkID)10388282(PQKB)10070401(MiAaPQ)EBC470630(Au-PeEL)EBL470630(CaPaEBR)ebr10351175(CaONFJC)MIL238499(OCoLC)501193479(PPN)143139290(EXLCZ)99100000000082227820090814d2009 uy 0engur|||||||||||txtccrMethods of molecular quantum mechanics an introduction to electronic molecular structure /Valerio Magnasco1st ed.Hoboken, N.J. Wiley20091 online resource (312 p.) Bibliographic Level Mode of Issuance: Monograph0-470-68441-0 0-470-68442-9 Includes bibliographical references and index.Preface. 1. Principles. 1.1 The Orbital Model. 1.2 Mathematical Methods. 1.3 Basic Postulates. 1.4 Physical Interpretation of the Basic Principles. 2. Matrices. 2.1 Definitions and Elementary Properties. 2.2 Properties of Determinants. 2.3 Special Matrices. 2.4 The Matrix Eigenvalue Problem. 3. Atomic Orbitals. 3.1 Atomic Orbitals as a Basis for Molecular Calculations. 3.2 Hydrogen-like Atomic Orbitals. 3.3 Slater-type Orbitals. 3.4 Gaussian-type Orbitals. 4. The Variation Method. 4.1 Variation Principles. 4.2 Nonlinear Parameters. 4.3 Linear Parameters and the Ritz Method. 4.4 Applications of the Ritz Method. 5. Spin. 5.1 The Zeeman Effect. 5.2 The Pauli Equations for One-electron Spin. 5.3 The Dirac Formula for N-electron Spin. 6. Antisymmetry of Many-electron Wavefunctions. 6.1 Antisymmetry Requirement and the Pauli Principle. 6.2 Slater Determinants. 6.3 Distributions Functions. 6.4 Average Values of Operators. 7. Self-consistent-field Calculations and Model Hamiltonians. 7.1 Elements of Hartree-Fock Theory for Closed Shells. 7.2 Roothaan Formulation of the LCAO-MO-SCF Equations. 7.3 Molecular Self-consistent-field Calculations. 7.4 Hückel Theory. 7.5 A Model for the One-dimensional Crystal. 8. Post-Hartree-Fock Methods. 8.1 Configuration Interaction. 8.2 Multiconfiguration Self-consistent-field. 8.3 Møller-Plesset Theory. 8.4 The MP2-R12 Method. 8.5 The CC-R12 Method. 8.6 Density Functional Theory. 9. Valence Bond Theory and the Chemical Bond. 9.1 The Born-Oppenheimer Approximation. 9.2 The Hydrogen Molecule H 2 . 9.3 The Origin of the Chemical Bond. 9.4 Valence Bond Theory and the Chemical Bond. 9.5 Hybridization and Molecular Structure. 9.6 Pauling's Formula for Conjugated and Aromatic Hydrocarbons. 10. Elements of Rayleigh-Schroedinger Perturbation Theory. 10.1 Rayleigh-Schroedinger Perturbation Equations. 10.2 First-order Theory. 10.3 Second-order Theory. 10.4 Approximate E 2 Calculations: The Hylleraas Functional. 10.5 Linear Pseudostates and Molecular Properties. 10.6 Quantum Theory of Magnetic Susceptibilities. 11. Atomic and Molecular Interactions. 11.1 The H-H Nonexpanded Interactions up to Second Order. 11.2 The H-H Expanded Interactions up to Second Order. 11.3 Molecular Interactions. 11.4 Van der Waals and Hydrogen Bonds. 11.5 The Keesom Interaction. 12. Symmetry. 12.1 Molecular Symmetry. 12.2 Group Theoretical Methods. 12.3 Illustrative Examples. References. Author Index. Subject Index .This provides an advanced text introducing graduate students to the mathematical foundations of methods needed to do working applications in molecular quantum mechanics.This provides an advanced text introducing graduate students to the mathematical foundations of methods needed to do working applications in molecular quantum mechanics. It contains a consistent use of atomic units from the very beginning for simplifying mathematical formulae, and presents a unified presentation of basic elements of atomic and molecular interactions, with particular emphasis on practical use of second-order calculation techniques. This advanced text introduces to the advanced undergraduate and graduate student the mathematical foundations of the methods needed to carry out practical applications in electronic molecular quantum mechanics, a necessary preliminary step before using commercial programmes to carry out quantum chemistry calculations. Major features of the book include: Consistent use of the system of atomic units, essential for simplifying all mathematical formulae Introductory use of density matrix techniques for interpreting properties of many-body systems An introduction to valence bond methods with an explanation of the origin of the chemical bond A unified presentation of basic elements of atomic and molecular interactions The book is intended for advanced undergraduate and first-year graduate students in chemical physics, theoretical and quantum chemistry. In addition, it is relevant to students from physics and from engineering sub-disciplines such as chemical engineering and materials sciences.Quantum chemistryMolecular structureElectronsQuantum chemistry.Molecular structure.Electrons.541/.28Magnasco Valerio446165MiAaPQMiAaPQMiAaPQBOOK9910139959503321Methods of molecular quantum mechanics2034422UNINA