05551nam 2200661 450 991013951190332120170809152939.01-118-62297-91-282-16537-297866121653750-470-61162-60-470-39426-9(CKB)2550000000005872(EBL)477660(OCoLC)520990468(SSID)ssj0000335246(PQKBManifestationID)11256964(PQKBTitleCode)TC0000335246(PQKBWorkID)10273097(PQKB)11578270(MiAaPQ)EBC477660(MiAaPQ)EBC4433291(EXLCZ)99255000000000587220180809h20092007 uy 0engur|n|---|||||txtccrBipedal robots modeling, design and walking synthesis /edited by Christine Chevallereau (and three others)London, England ;Hoboken, New Jersey :ISTE :Wiley,2009.©20071 online resource (338 p.)Control systems, robotics and manufacturing series. ;v.78"First published in France in 2007 by Hermès Science/Lavoisier entitled 'Robots marcheurs bipêdes : modélisation, conception, synthèse de la marche'" --T.p. verso.1-84821-076-0 Includes bibliographical references and index.Bipedal Robots: Modeling, Design and Walking Synthesis; Table of Contents; Chapter 1. Bipedal Robots and Walking; 1.1. Introduction; 1.2. Biomechanical approach; 1.2.1. Biomechanical system: a source of inspiration; 1.2.2. Skeletal structure and musculature; 1.3. Human walking; 1.3.1. Architecture; 1.3.2. Walking and running trajectory data; 1.3.3. Study cases; 1.4. Bipedal walking robots: state of the art; 1.4.1. A brief history; 1.4.2. Japanese studies and creations; 1.4.3. The situation in France; 1.4.4. General evolution tendencies; 1.5. Different applications; 1.5.1. Service robotics1.5.2. Robotics and dangerous terrains1.5.3. Toy robots and computer animation in cinema; 1.5.4. Defense robotics; 1.5.5. Medical prostheses; 1.5.6. Surveillance robots; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Kinematic and Dynamic Models for Walking; 2.1. Introduction; 2.2. The kinematics of walking; 2.2.1. DoF of the locomotion system; 2.2.2. Walking patterns; 2.2.3. Generalized coordinates for a sagittal step; 2.2.4. Generalized coordinates for three-dimensional walking; 2.2.5. Transition conditions; 2.3. The dynamics of walking; 2.3.1. Lagrangian dynamic model2.3.2. Newton-Euler's dynamic model2.3.3. Impact model; 2.4. Dynamic constraints; 2.4.1. CoP and equilibrium constraints; 2.4.2. Non-sliding constraints; 2.5. Complementary feasibility constraints; 2.5.1. Respecting the technological limitations; 2.5.2. Non-collision constraints; 2.6. Conclusion; 2.7. Bibliography; Chapter 3. Design Tools for Making Bipedal Robots; 3.1. Introduction; 3.2. Study of influence of robot body masses; 3.2.1. Case 1: the three-link robot; 3.2.2. Case 2: the five-link robot; 3.3. Mechanical design: the architectures carried out; 3.3.1. The structure of planar robots3.3.2. 3D robot structures3.3.3. Technology of inter-body joints; 3.3.4. Drive technology; 3.4. Actuators; 3.4.1. Actuator types; 3.4.2. Characteristics of electric actuators; 3.4.3. Elements of choice for robotic actuators; 3.4.4. Comparing actuator performances; 3.4.5. Performances of transmission-actuator associations; 3.5. Sensors; 3.5.1. Measuring; 3.5.2. Frequently used sensors; 3.5.3. Characteristics and integration; 3.5.4. Sensors of inertial localization; 3.6. Conclusion; 3.7. Appendix; 3.7.1. Geometric model; 3.7.2. Dynamic model; 3.8. BibliographyChapter 4. Walking Pattern Generators4.1. Introduction; 4.2. Passive and quasi-passive dynamic walking; 4.2.1. Passive walking; 4.2.2. Quasi-passive dynamic walking; 4.3. Static balance walking; 4.4. Dynamic synthesis of walking; 4.4.1. Performance criteria for walking synthesis; 4.4.2. Formalizing the problem of dynamic optimization; 4.5. Walking synthesis via parametric optimization; 4.5.1. Approximating the control variables; 4.5.2. Parameterizing the configuration variables; 4.5.3. Parameterizing the Lagrange multipliers; 4.5.4. Formulation of the parametric optimization problem4.5.5. A parametric optimization exampleThis book presents various techniques to carry out the gait modeling, the gait patterns synthesis, and the control of biped robots. Some general information on the human walking, a presentation of the current experimental biped robots, and the application of walking bipeds are given. The modeling is based on the decomposition on a walking step into different sub-phases depending on the way each foot stands into contact on the ground. The robot design is dealt with according to the mass repartition and the choice of the actuators. Different ways to generate walking patterns are considered, suchControl systems, robotics and manufacturing series.RobotsMotionElectronic books.RobotsMotion.629.8/932629.892Chevallereau ChristineMiAaPQMiAaPQMiAaPQBOOK9910139511903321Bipedal robots1936818UNINA