02468nam 2200637 a 450 991013905630332120170816123454.01-118-61717-71-118-61691-X1-299-31429-51-118-61685-5(CKB)2560000000100567(EBL)1143511(OCoLC)830161888(SSID)ssj0000833226(PQKBManifestationID)11449178(PQKBTitleCode)TC0000833226(PQKBWorkID)10935739(PQKB)10531508(OCoLC)841168691(MiAaPQ)EBC1143511(CaSebORM)9781118616918(PPN)195586085(EXLCZ)99256000000010056720101222d2011 uy 0engur|n|---|||||txtccrFluid mechanics for chemical engineering[electronic resource] /Mathieu Mory1st editionLondon ISTE ;Hoboken, N.J. Wiley20111 online resource (440 p.)ISTEDescription based upon print version of record.1-84821-281-X Includes bibliographical references and index.pt. 1. Elements in fluid mechanics -- pt. 2. Mixing and chemical reactions -- pt. 3. Mechanical separation.The book aims at providing to master and PhD students the basic knowledge in fluid mechanics for chemical engineers. Applications to mixing and reaction and to mechanical separation processes are addressed. The first part of the book presents the principles of fluid mechanics used by chemical engineers, with a focus on global theorems for describing the behavior of hydraulic systems. The second part deals with turbulence and its application for stirring, mixing and chemical reaction. The third part addresses mechanical separation processes by considering the dynamics of particles in a flISTEChemical processesFluid dynamicsChemical processes.Fluid dynamics.660.29660/.29SCI041000bisacshMory Mathieu860617MiAaPQMiAaPQMiAaPQBOOK9910139056303321Fluid mechanics for chemical engineering1920479UNINA02465nam0 2200469 i 450 VAN0010255420240806100720.594N978-1-4471-6395-420150910d2014 |0itac50 baengGB|||| |||||ˆAn ‰introduction to Laplace transforms and Fourier seriesPhil Dyke2. edLondonSpringer2014XV, 318 p.ill.24 cm001VAN000294432001 Springer undergraduate mathematics series210 Berlin [etc.]Springer1998-VAN00239563ˆAn ‰introduction to Laplace transforms and Fourier series141052334-XXOrdinary differential equations [MSC 2020]VANC021251MF34A25Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc. [MSC 2020]VANC022679MF35-XXPartial differential equations [MSC 2020]VANC019763MF35A22Transform methods (e.g. integral transforms) applied to PDEs [MSC 2020]VANC024583MF42-XXHarmonic analysis on Euclidean spaces [MSC 2020]VANC019851MF42A16Fourier coefficients, Fourier series of functions with special properties, special Fourier series [MSC 2020]VANC024672MF42A38Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type [MSC 2020]VANC024732MF44-XXIntegral transforms, operational calculus [MSC 2020]VANC022355MF44A10Laplace transform [MSC 2020]VANC019854MFFourier seriesKW:KLaplace TransformsKW:KWaveletsKW:KGBLondonVANL000015DykePhilVANV044269725873Springer <editore>VANV108073650Dyke, P. P. G.Dyke, PhilVANV080101ITSOL20260130RICAhttp://dx.doi.org/10.1007/978-1-4471-6395-4E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA CENTRO DI SERVIZIO SBAVAN15NVAN00102554BIBLIOTECA CENTRO DI SERVIZIO SBA15CONS SBA EBOOK 4346 15EB 4346 20191106 Introduction to Laplace transforms and Fourier series1410523UNICAMPANIA