05584nam 2200721 a 450 991013886300332120210617130214.01-118-60291-91-118-60285-41-118-60283-81-299-18780-3(CKB)2550000001005910(EBL)1124673(OCoLC)828298911(SSID)ssj0000831963(PQKBManifestationID)11421096(PQKBTitleCode)TC0000831963(PQKBWorkID)10881247(PQKB)10765859(OCoLC)842860158(MiAaPQ)EBC1124673(Au-PeEL)EBL1124673(CaPaEBR)ebr10660582(CaONFJC)MIL450030(PPN)181711699(EXLCZ)99255000000100591020110719d2011 uy 0engur|n|---|||||txtccrNetwork performance analysis[electronic resource] /Thomas Bonald, Mathieu FeuilletLondon ISTE ;Hoboken, N.J. John Wiley20111 online resource (267 p.)ISTEDescription based upon print version of record.1-84821-312-3 Includes bibliographical references and index.Cover; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction; 1.1. Motivation; 1.2. Networks; 1.3. Traffic; 1.4. Queues; 1.5. Structure of the book; 1.6. Bibliography; Chapter 2. Exponential Distribution; 2.1. Definition; 2.2. Discrete analog; 2.3. An amnesic distribution; 2.4. Minimum of exponential variables; 2.5. Sum of exponential variables; 2.6. Random sum of exponential variables; 2.7. A limiting distribution; 2.8. A ""very"" random variable; 2.9. Exercises; 2.10. Solution to the exercises; Chapter 3. Poisson Processes; 3.1. Definition; 3.2. Discrete analog3.3. An amnesic process3.4. Distribution of the points of a Poisson process; 3.5. Superposition of Poisson processes; 3.6. Subdivision of a Poisson process; 3.7. A limiting process; 3.8. A ""very"" random process; 3.9. Exercises; 3.10. Solution to the exercises; Chapter 4. Markov Chains; 4.1. Definition; 4.2. Transition probabilities; 4.3. Periodicity; 4.4. Balance equations; 4.5. Stationary measure; 4.6. Stability and ergodicity; 4.7. Finite state space; 4.8. Recurrence and transience; 4.9. Frequency of transition; 4.10. Formula of conditional transitions; 4.11. Chain in reverse time4.12. Reversibility4.13. Kolmogorov's criterion; 4.14. Truncation of a Markov chain; 4.15. Random walk; 4.16. Exercises; 4.17. Solution to the exercises; Chapter 5. Markov Processes; 5.1. Definition; 5.2. Transition rates; 5.3. Discrete analog; 5.4. Balance equations; 5.5. Stationary measure; 5.6. Stability and ergodicity; 5.7. Recurrence and transience; 5.8. Frequency of transition; 5.9. Virtual transitions; 5.10. Embedded chain; 5.11. Formula of conditional transitions; 5.12. Process in reverse time; 5.13. Reversibility; 5.14. Kolmogorov's criterion; 5.15. Truncation of a reversible process5.16. Product of independent Markov processes5.17. Birth-death processes; 5.18. Exercises; 5.19. Solution to the exercises; Chapter 6. Queues; 6.1. Kendall's notation; 6.2. Traffic and load; 6.3. Service discipline; 6.4. Basic queues; 6.5. A general queue; 6.6. Little's formula; 6.7. PASTA property; 6.8. Insensitivity; 6.9. Pollaczek-Khinchin's formula; 6.10. The observer paradox; 6.11. Exercises; 6.12. Solution to the exercises; Chapter 7. Queuing Networks; 7.1. Jackson networks; 7.2. Traffic equations; 7.3. Stationary distribution; 7.4. MUSTA property; 7.5. Closed networks7.6. Whittle networks7.7. Kelly networks; 7.8. Exercises; 7.9. Solution to the exercises; Chapter 8. Circuit Traffic; 8.1. Erlang's model; 8.2. Erlang's formula; 8.3. Engset's formula; 8.3.1. Model without blocking; 8.3.2. Model with blocking; 8.4. Erlang's waiting formula; 8.4.1. Waiting probability; 8.4.2. Mean waiting time; 8.5. The multiclass Erlang model; 8.6. Kaufman-Roberts formula; 8.7. Network models; 8.8. Decoupling approximation; 8.9. Exercises; 8.10. Solutions to the exercises; Chapter 9. Real-time Traffic; 9.1. Flows and packets; 9.2. Packet-level model; 9.3. Flow-level model9.4. Congestion rateThe book presents some key mathematical tools for the performance analysis of communication networks and computer systems.Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service.This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples iISTEComputer networksEvaluationNetwork performance (Telecommunication)Queuing theoryComputer networksEvaluation.Network performance (Telecommunication)Queuing theory.621.382Bonald Thomas941050Feuillet Mathieu941051MiAaPQMiAaPQMiAaPQBOOK9910138863003321Network performance analysis2122208UNINA