06585nam 2200733 450 991013625380332120200520144314.01-5231-1479-71-119-04120-11-119-04121-X1-119-04119-8(CKB)3710000000585444(EBL)4386909(SSID)ssj0001601060(PQKBManifestationID)16311471(PQKBTitleCode)TC0001601060(PQKBWorkID)14868715(PQKB)10270661(PQKBManifestationID)16268858(PQKBWorkID)14868716(PQKB)22686250(MiAaPQ)EBC4405832(MiAaPQ)EBC4386909(DLC) 2016000200(Au-PeEL)EBL4386909(CaPaEBR)ebr11151991(OCoLC)933766132(PPN)229848192(EXLCZ)99371000000058544420160215h20162016 uy 0engur|n|---|||||txtccrSmart materials for waste water applications /edited by Ajay Kumar MishraSalem, Massachusetts ;Hoboken, New Jersey :Scrivener Publishing :Wiley,2016.©20161 online resource (427 p.)Description based upon print version of record.1-119-04118-X Includes bibliographical references at the end of each chapters and index.Half Title page; Title page; Copyright page; Preface; Part 1: Carbon Nanomaterials; Chapter 1: Easy and Large-Scale Synthesis of Carbon Nanotube-Based Adsorbents for the Removal of Arsenic and Organic Pollutants from Aqueous Solutions; 1.1 Introduction; 1.2 Removal of Arsenic from Aqueous Solution; 1.3 Removal of Organic Pollutants from Aqueous Solution; 1.4 Summary and Outlook; Acknowledgment; References; Chapter 2: Potentialities of Graphene-Based Nanomaterials for Wastewater Treatment; 2.1 Introduction; 2.2 Graphene Synthesis Routes2.3 Adsorption of Water Pollutants onto Graphene-Based Materials2.4 Comparison of the Adsorption Performance of Graphene-Based Nanomaterials; 2.5 Regeneration and Reutilization of the Graphene-Based Adsorbents; 2.6 Conclusion; Acknowledgements; Nomenclature; References; Chapter 3: Photocatalytic Activity of Nanocarbon-TiO2 Composites with Gold Nanoparticles for the Degradation of Water Pollutants; 3.1 Introduction; 3.2 Experimental; 3.3 Results and Discussion; 3.4 Conclusions; Acknowledgements; References; Chapter 4: Carbon Nanomaterials for Chromium (VI) Removal from Aqueous Solution4.1 Introduction4.2 Carbon Nanomaterials for Heavy Metal Removal; 4.3 Latest Progress in Nanocarbon Materials for Cr(VI) Treatment; 4.4 Summary; Acknowledgement; References; Chapter 5: Nano-Carbons from Pollutant Soot: A Cleaner Approach toward Clean Environment; 5.1 Introduction; 5.2 Separation of Nano-carbon from Pollutant BC; 5.3 Functionalization of Nano-Carbons Isolated from Pollutant BC; 5.4 Nano-Carbons from Pollutant Soot for Wastewater Treatment; 5.5 Conclusion; Acknowledgments; References; Chapter 6: First-Principles Computational Design of Graphene for Gas Detection6.1 Introduction6.2 Computational Methodology; 6.3 Nitrogen Doping and Nitrogen Vacancy Complexes in Graphene; 6.4 Molecular Gas Adsorptions; 6.5 Summary; Acknowledgments; References; Part 2: Synthetic Nanomaterials; Chapter 7: Advanced Material for Pharmaceutical Removal from Wastewater; 7.1 Introduction; 7.2 Advanced Materials in the Removal of Pharmaceuticals from Wastewater; 7.3 Activated Carbon (AC); 7.4 Modified Carbon Nanotubes (CNTs); 7.5 Modified Polysaccharide Matrices; 7.6 Metal Organic Framework (MOF); 7.7 Reactive Composites; 7.8 TiO2-Coated Adsorbents7.9 Adsorption by Zeolite and Polymer Composites7.10 Adsorption by Clay; 7.11 Conventional Technologies for the Removal of PPCPs in WWTP; 7.12 Membrane Filtration; 7.13 Ozonation and Advanced Oxidation Process (AOP); 7.14 Electro-oxidation; 7.15 Adsorption by Coagulation and Sedimentation; 7.16 Conclusion; References; Chapter 8: Flocculation Performances of Polymers and Nanomaterials for the Treatment of Industrial Wastewaters; 8.1 General Introduction; 8.2 Conventional Treatment of Water with Inorganic Coagulants8.3 Development of Polymer-Based Coagulants and Mechanisms of Turbidity Removal"Smart materials are used to develop more cost-effective and high-performance water treatment systems as well as instant and continuous ways to monitor water quality. Smart materials in water research have been extensively utilized for the treatment, remediation, and pollution prevention. Smart materials can maintain the long term water quality, availability and viability of water resource. Thus, water via smart materials can be reused, recycled, desalinized and also it can detect the biological and chemical contamination whether the source is from municipal, industrial or man-made waste. The 15 state-of-the-art review chapters contained in this book cover the recent advancements in the area of waste water, as well as the prospects about the future research and development of smart materials for the waste water applications in the municipal, industrial and manmade waste areas. Treatment techniques (nanofiltration, ultrafiltration, reverse osmosis, adsorption and nano-reactive membranes) are also covered in-depth. The chapters are divided into three groups: The first section includes the various carbon nanomaterials (such as carbon nanotubes, mixed oxides) with a focus on use of carbon at nanoscale applied for waste water research. The second section focuses on synthetic nanomaterials for pollutants removal. The third section highlights the bio-polymeric nanomaterials where the authors have used the natural polymers matrices in a composite and nanocomposite material for waste treatment"--Provided by publisher.WaterPurificationMaterialsSmart materialsNanostructured materialsIndustrial applicationsWaterPurificationMaterials.Smart materials.Nanostructured materialsIndustrial applications.628.1/680284Mishra Ajay Kumar1965-MiAaPQMiAaPQMiAaPQBOOK9910136253803321Smart materials for waste water applications2137164UNINA