04113nam 22006375 450 991013609220332120200702111052.03-319-47721-810.1007/978-3-319-47721-3(CKB)3710000000915546(DE-He213)978-3-319-47721-3(MiAaPQ)EBC4722274(PPN)196323703(EXLCZ)99371000000091554620161020d2016 u| 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierRandom Walks on Reductive Groups /by Yves Benoist, Jean-François Quint1st ed. 2016.Cham :Springer International Publishing :Imprint: Springer,2016.1 online resource (XI, 323 p.) Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,0071-1136 ;623-319-47719-6 Includes bibliographical references and index.Introduction -- Part I The Law of Large Numbers -- Stationary measures -- The Law of Large Numbers -- Linear random walks -- Finite index subsemigroups -- Part II Reductive groups -- Loxodromic elements -- The Jordan projection of semigroups -- Reductive groups and their representations -- Zariski dense subsemigroups -- Random walks on reductive groups -- Part III The Central Limit Theorem -- Transfer operators over contracting actions -- Limit laws for cocycles -- Limit laws for products of random matrices -- Regularity of the stationary measure -- Part IV The Local Limit Theorem -- The Spectrum of the complex transfer operator -- The Local limit theorem for cocycles -- The local limit theorem for products of random matrices -- Part V Appendix -- Convergence of sequences of random variables -- The essential spectrum of bounded operators -- Bibliographical comments.The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,0071-1136 ;62ProbabilitiesDynamicsErgodic theoryTopological groupsLie groupsProbability Theory and Stochastic Processeshttps://scigraph.springernature.com/ontologies/product-market-codes/M27004Dynamical Systems and Ergodic Theoryhttps://scigraph.springernature.com/ontologies/product-market-codes/M1204XTopological Groups, Lie Groupshttps://scigraph.springernature.com/ontologies/product-market-codes/M11132Probabilities.Dynamics.Ergodic theory.Topological groups.Lie groups.Probability Theory and Stochastic Processes.Dynamical Systems and Ergodic Theory.Topological Groups, Lie Groups.519.282Benoist Yvesauthttp://id.loc.gov/vocabulary/relators/aut756055Quint Jean-Françoisauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK9910136092203321Random Walks on Reductive Groups2162741UNINA