03779nam 22006855 450 991013493070332120200705234934.03-319-20547-110.1007/978-3-319-20547-2(CKB)4210000000000432(SSID)ssj0001585198(PQKBManifestationID)16265540(PQKBTitleCode)TC0001585198(PQKBWorkID)14866511(PQKB)10388909(DE-He213)978-3-319-20547-2(MiAaPQ)EBC6296997(MiAaPQ)EBC5587471(Au-PeEL)EBL5587471(OCoLC)921124129(PPN)188569332(EXLCZ)99421000000000043220150907d2015 u| 0engurnn|008mamaatxtccrInfinity Properads and Infinity Wheeled Properads /by Philip Hackney, Marcy Robertson, Donald Yau1st ed. 2015.Cham :Springer International Publishing :Imprint: Springer,2015.1 online resource (XV, 358 p. 213 illus.) Lecture Notes in Mathematics,0075-8434 ;2147Bibliographic Level Mode of Issuance: Monograph3-319-20546-3 Includes bibliographical references and index.Introduction -- Graphs -- Properads -- Symmetric Monoidal Closed Structure on Properads -- Graphical Properads -- Properadic Graphical Category -- Properadic Graphical Sets and Infinity Properads -- Fundamental Properads of Infinity Properads -- Wheeled Properads and Graphical Wheeled Properads -- Infinity Wheeled Properads -- What's Next?.The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads, and enable one to encode bialgebraic, rather than just (co)algebraic, structures.   The text extends both the Joyal-Lurie approach to higher categories and the Cisinski-Moerdijk-Weiss approach to higher operads, and provides a foundation for a broad study of the homotopy theory of properads. This work also serves as a complete guide to the generalised graphs which are pervasive in the study of operads and properads. A preliminary list of potential applications and extensions comprises the final chapter.   Infinity Properads and Infinity Wheeled Properads is written for mathematicians in the fields of topology, algebra, category theory, and related areas. It is written roughly at the second year graduate level, and assumes a basic knowledge of category theory.Lecture Notes in Mathematics,0075-8434 ;2147Algebraic topologyCategory theory (Mathematics)Homological algebraAlgebraic Topologyhttps://scigraph.springernature.com/ontologies/product-market-codes/M28019Category Theory, Homological Algebrahttps://scigraph.springernature.com/ontologies/product-market-codes/M11035Algebraic topology.Category theory (Mathematics).Homological algebra.Algebraic Topology.Category Theory, Homological Algebra.512.55Hackney Philipauthttp://id.loc.gov/vocabulary/relators/aut716389Robertson Marcyauthttp://id.loc.gov/vocabulary/relators/autYau Donaldauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK9910134930703321Infinity Properads and Infinity Wheeled Properads2273100UNINA