00827nam 2200169z- 450 9910692735703321(CKB)5470000002356119(EXLCZ)99547000000235611920230503cuuuuuuuu -u- -engInspectors general : contracting actions by Treasury Office of Inspector General : report to the chairman, Permanent Subcommittee on Investigations, Committee on Governmental Affairs, U.S. SenateWashington, D.C. (441 G St., NW, Rm. LM, Washington 20548)Inspectors general BOOK9910692735703321Inspectors general : contracting actions by Treasury Office of Inspector General : report to the chairman, Permanent Subcommittee on Investigations, Committee on Governmental Affairs, U.S. Senate3209959UNINA00966nam a22002531i 450099100134228970753620031103103641.0040407s1957 it a||||||||||||||||ita b12755709-39ule_instARCHE-073533ExLDip.to Scienze StoricheitaA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l.910.2Medri, Gualtiero484089Ferrara :breve guida /Gualtiero MedriFerrara :[s.n.],1957163 p. :ill. ;17 cmIn calce al front.: Pubblicata sotto l'egida dell'Ente provinciale per il turismoFerraraGuide.b1275570902-04-1416-04-04991001342289707536LE009 LA I G 117 (Fondo Bottari) 12009000220515le009-E0.00-no 00000.i1329497016-04-04Ferrara266953UNISALENTOle00916-04-04ma -itait 0103817nam 22007215 450 991013486930332120200701175137.03-319-22704-110.1007/978-3-319-22704-7(CKB)4340000000001629(SSID)ssj0001599564(PQKBManifestationID)16305814(PQKBTitleCode)TC0001599564(PQKBWorkID)14892268(PQKB)11281805(DE-He213)978-3-319-22704-7(MiAaPQ)EBC5592280(PPN)19088455X(EXLCZ)99434000000000162920151224d2015 u| 0engurnn|008mamaatxtccrQuantum Lie Theory A Multilinear Approach /by Vladislav Kharchenko1st ed. 2015.Cham :Springer International Publishing :Imprint: Springer,2015.1 online resource (XIII, 302 p.) Lecture Notes in Mathematics,0075-8434 ;2150Bibliographic Level Mode of Issuance: Monograph3-319-22703-3 Includes bibliographical references and index.Elements of noncommutative algebra -- Poincar´e-Birkhoff-Witt basis -- Quantizations of Kac-Moody algebras -- Algebra of skew-primitive elements -- Multilinear operations -- Braided Hopf algebras -- Binary structures -- Algebra of primitive nonassociative polynomials.This is an introduction to the mathematics behind the phrase “quantum Lie algebra”. The numerous attempts over the last 15-20 years to define a quantum Lie algebra as an elegant algebraic object with a binary “quantum” Lie bracket have not been widely accepted. In this book, an alternative approach is developed that includes multivariable operations. Among the problems discussed are the following: a PBW-type theorem; quantum deformations of Kac--Moody algebras; generic and symmetric quantum Lie operations; the Nichols algebras; the Gurevich--Manin  Lie algebras;  and Shestakov--Umirbaev  operations for the Lie theory of nonassociative products.  Opening with an introduction for beginners and continuing as a textbook for graduate students in physics and mathematics, the book can also be used as a reference by more advanced readers. With the exception of the introductory chapter, the content of this monograph has not previously appeared in book form.Lecture Notes in Mathematics,0075-8434 ;2150Associative ringsRings (Algebra)Nonassociative ringsGroup theoryQuantum theoryAssociative Rings and Algebrashttps://scigraph.springernature.com/ontologies/product-market-codes/M11027Non-associative Rings and Algebrashttps://scigraph.springernature.com/ontologies/product-market-codes/M11116Group Theory and Generalizationshttps://scigraph.springernature.com/ontologies/product-market-codes/M11078Quantum Physicshttps://scigraph.springernature.com/ontologies/product-market-codes/P19080Associative rings.Rings (Algebra)Nonassociative rings.Group theory.Quantum theory.Associative Rings and Algebras.Non-associative Rings and Algebras.Group Theory and Generalizations.Quantum Physics.512.55Kharchenko Vladislavauthttp://id.loc.gov/vocabulary/relators/aut716357MiAaPQMiAaPQMiAaPQBOOK9910134869303321Quantum lie theory1387927UNINA