05199nam 2200649 450 991013241000332120200520144314.01-5231-1008-23-527-65697-93-527-65695-23-527-65698-7(CKB)3710000000372122(EBL)1964209(SSID)ssj0001466721(PQKBManifestationID)11935090(PQKBTitleCode)TC0001466721(PQKBWorkID)11488441(PQKB)11773017(MiAaPQ)EBC1964209(Au-PeEL)EBL1964209(CaPaEBR)ebr11030129(OCoLC)905984269(PPN)188866701(EXLCZ)99371000000037212220150317h20152015 uy 0gerurcnu||||||||txtccrBiodegradable polyesters /edited by Stoyko FakirovWeinheim, Germany :Wiley-VCH,2015.©20151 online resource (370 p.)Description based upon print version of record.3-527-33086-0 Includes bibliographical references at the end of each chapters and index.Cover; Contents; List of Contributors; List of Abbreviations and Symbols; Preface; Chapter 1 Biodegradable Polyesters: Synthesis, Properties, Applications; 1.1 Historical Overview on the Origin of Polymer Science and Synthesis of Polyamides and Polyesters; 1.1.1 Synthesis of Polyamides; 1.1.2 Initial Knowledge about Polyesters; 1.2 Publication Trend of Representative Biodegradable and Nonbiodegradable Polyesters in the Past Century; 1.3 Biodegradable Polyesters; 1.3.1 Biodegradable Aliphatic Polyesters and Their Copolymers; 1.3.1.1 Poly(lactic acid)1.3.1.2 Polyglycolide or Poly(glycolic acid)1.3.1.3 Poly(caprolactone); 1.4 Concluding Remarks; Acknowledgment; References; Chapter 2 Functional (Bio)degradable Polyesters by Radical Ring-Opening Polymerization; 2.1 Introduction; 2.2 Radical Ring-Opening Polymerization (RROP) of Cyclic Ketene Acetals; 2.2.1 Starting Monomers: Cyclic Ketene Acetals; 2.2.2 Radical Ring-Opening Polymerization Mechanism; 2.2.3 Functional Polyesters by Conventional and Controlled Radical Homopolymerization of CKAs; 2.2.4 Functional Polyesters by Copolymerization of CKAs and Vinyl Monomers; 2.3 ConclusionsReferences Chapter 3 Microbial Synthesis of Biodegradable Polyesters: Processes, Products, Applications; 3.1 Introduction; 3.2 Biogenesis of Microbial Polyhydroxyalkanoate Granules; 3.3 The Diversity of Biopolyesters; 3.4 Polyester (PHA) Synthases are the Key Enzymes; 3.5 Catalytic Reaction Mechanism; 3.6 PHA Inclusions: Self-Assembly and Structure; 3.7 Industrial Production of Bacterial Polyhydroxyalkanoates: PHAs via Fermentation; 3.8 Application Opportunities of Bacterial Polyhydroxyalkanoates; 3.8.1 In Energy Industry: Biofuels Based on PHAs3.8.2 In Material Industry: PHAs as Polymeric Materials 3.8.2.1 PHAs as Biodegradable Plastics and Fiber Materials; 3.8.2.2 PHAs as Medical Implant Materials; 3.8.2.3 PHAs as Drug Delivery Carrier; 3.8.3 Fine Chemical Industry: PHA Chiral Monomers; 3.8.4 Application of PHA Granule Surface Proteins; 3.8.5 Production of Tailor-Made Biopolyester Nanoparticles and Potential Applications; 3.8.6 Future Development of PHA-Based Industry; 3.8.6.1 The Development of Low-Cost PHA Production Technology; 3.8.6.2 Unusual PHAs with Special Properties; 3.8.6.3 High Value Added Applications3.8.6.4 Other Future Applications 3.8.6.5 Microbial Synthesis of Poly(lactic acid) (PLA); 3.8.7 Applications of PHA Inclusions as Functionalized Biobeads; 3.8.7.1 Bioseparations; 3.8.7.2 Drug Delivery; 3.8.7.3 Protein Purification; 3.8.7.4 Enzyme Immobilization; 3.8.7.5 Diagnostics and Imaging; 3.8.7.6 Vaccine Delivery; 3.9 Conclusions and Outlook; Acknowledgments; References; Chapter 4 Synthesis, Properties, and Mathematical Modeling of Biodegradable Aliphatic Polyesters Based on 1,3-Propanediol and Dicarboxylic Acids; 4.1 Introduction; 4.1.1 Aliphatic Polyesters4.1.2 Production of 1,3-PropanediolCollating otherwise hard-to-get and recently acquired knowledge in one work, this is a comprehensive reference on the synthesis, properties, characterization, and applications of this eco-friendly class of plastics. A group of internationally renowned researchers offer their first-hand experience and knowledge, dealing exclusively with those biodegradable polyesters that have become increasingly important over the past two decades due to environmental concerns on the one hand and newly-devised applications in the biomedical field on the other. The result is an unparalleled overview for thePolyestersBiodegradable plasticsPolyesters.Biodegradable plastics.668.4225Fakirov StoykoMiAaPQMiAaPQMiAaPQBOOK9910132410003321Biodegradable polyesters2168040UNINA