04346nam 2200661 450 991013125680332120200520144314.01-119-00738-01-119-00737-2(CKB)3710000000421616(EBL)3563937(SSID)ssj0001536536(PQKBManifestationID)11862665(PQKBTitleCode)TC0001536536(PQKBWorkID)11512741(PQKB)11365702(MiAaPQ)EBC4040476(MiAaPQ)EBC3563937(Au-PeEL)EBL3563937(CaPaEBR)ebr11064043(OCoLC)918791452(EXLCZ)99371000000042161620150620h20152015 uy 0engur|n|---|||||txtccrElectrodes for li-ion batteriesVolume 2Materials, mechanisms and performance /Laure Monconduit, Laurence Croguennec, Rémi DedryvèreLondon, England ;Hoboken, New Jersey :ISTE :Wiley,2015.©20151 online resource (102 p.)Energy Series : Energy Storage - Batteries and Supercapacitors SetDescription based upon print version of record.1-84821-721-8 1-119-00736-4 Includes bibliographical references and index.""Cover""; ""Title Page""; ""Copyright""; ""Contents""; ""Acknowledgments""; ""Preface""; ""Introduction""; ""Toward efficient Li-ion batteries""; ""1: Negative Electrodes""; ""1.1. Preamble""; ""1.2. Classic materials: insertion mechanism""; ""1.2.1. Graphitic carbon""; ""1.2.1.1. Lithium intercalation mechanisms""; ""1.2.1.2. Electrode/electrolyte interface and additives""; ""1.2.2. Titanium oxides""; ""1.2.2.1. Li4Ti5O12""; ""1.2.2.2. TiO2""; ""1.2.2.3. Different crystallographic arrangements""; ""1.2.2.4. Performances and mechanisms""; ""1.2.2.5. Optimizations""""1.3. Toward other materials and other mechanisms""""1.3.1. Silicon""; ""1.3.1.1. Lithiation/delithiation mechanisms""; ""1.3.1.2. Nanostructured silicon""; ""1.3.1.3. Electrode formulation""; ""1.3.1.4. Aging mechanisms""; ""1.3.2. Other block p elements""; ""1.3.2.1. The alloys""; ""1.3.2.2. The conversion materials""; ""1.3.2.3. Limitations: volume changes and instability of the SEI""; ""1.3.2.4. Nanostructuration""; ""1.3.2.5. Electrode formulation""; ""1.3.2.6. Electrolyte formulation: the effect of additives""; ""1.4. Summary on negative electrodes""; ""2: Positive Electrodes""""2.1. Preamble""""2.2. Layered transition metal oxides as positive electrode materials for Li-ion batteries: from LiCoO2 to Li1+xM1-xO2""; ""2.2.1. The layered oxide LiCoO2: the starting point""; ""2.2.2. From LiNiO2, initially explored as an alternative to LiCoO2, to the commercialization of LiNi0.80Co0.15Al0.05O2 (NCA) and LiNi1/3Mn1/3Co1/3O2 (NMC)""; ""2.2.3. Electrode/electrolyte interfaces and aging phenomena in layered oxides""; ""2.2.4. High-capacity Li-rich layered oxides""; ""2.2.4.1. Toward unprecedented gravimetric capacities""""2.2.4.2. Surface phenomena and electrode/electrolyte interface stabilization""""2.2.4.3. Conclusion""; ""2.3. Alternatives to layered oxides""; ""2.3.1. Materials with spinel structure: from LiMn2O4 to LiNi1/2Mn3/2O4""; ""2.3.1.1. LiMn2O4, a material with three-dimensional structure""; ""2.3.1.2. Dissolution of LiMn2O4 at the interface with the electrolyte""; ""2.3.1.3. LiNi0.5Mn1.5O4: toward high potentials""; ""2.3.1.4. Improving the electrode/electrolyte interface at high potential""; ""2.3.2. The olivine phase LiFePO4: a small revolution""; ""Conclusion""; ""Bibliography""; ""Index""Electric batteriesMaterialsEnergy storageMaterialsPower electronicsMaterialsElectric batteriesMaterials.Energy storageMaterials.Power electronicsMaterials.621.31242Monconduit Laure863642Croguennec LaurenceDedryvère RémiMiAaPQMiAaPQMiAaPQBOOK9910131256803321Electrodes for li-ion batteries1927602UNINA