01735nas 2200385 n 450 99000892308040332120240229084349.01721-0534000892308FED01000892308(Aleph)000892308FED01000892308CNRP 0021480020161109b18931896km-y0itaa50------baitaITauu--------Bollettino della Scuola Agraria di Scandicci presso Firenze1893-1896Firenze[s.n.]0010008934362001Bullettino di agricoltura agronomia e chimica agraria0010008922282001Bollettino dell'Istituto agrario di ScandicciBollettino della Scuola Agraria di Scandicci presso Firenze63(450.521)ITACNP20090723http://acnp.cib.unibo.it/cgi-ser/start/it/cnr/dc-p1.tcl?catno=2110598&person=false&language=ITALIANO&libr=&libr_th=unina1Biblioteche che possiedono il periodicoSE990008923080403321Biblioteca Centralizzata. Facoltà di Agraria dell'Università Federico II di Napoli1893-1895;FAGBCFAGBCBollettino della Scuola Agraria di Scandicci presso Firenze799163UNINA866-01NA087 Biblioteca Centralizzata. Facoltà di Agraria dell'Università Federico II di Napoliv. Università, 100 Palazzo Reale, 80055 Portici (NA)081-2539322081-7760229itacnp.cib.unibo.itACNP Italian Union Catalogue of Serialshttp://acnp.cib.unibo.it/cgi-ser/start/it/cnr/df-p.tcl?catno=2110598&language=ITALIANO&libr=&person=&B=1&libr_th=unina&proposto=NO03806nam 22005895 450 991029978020332120251116133845.01-4939-2181-910.1007/978-1-4939-2181-2(CKB)3710000000324982(SSID)ssj0001408281(PQKBManifestationID)11766018(PQKBTitleCode)TC0001408281(PQKBWorkID)11346384(PQKB)10923605(DE-He213)978-1-4939-2181-2(MiAaPQ)EBC6313115(MiAaPQ)EBC5576248(Au-PeEL)EBL5576248(OCoLC)899265028(PPN)183153197(EXLCZ)99371000000032498220141215d2015 u| 0engurnn#008mamaatxtccrIntroduction to Nonlinear Dispersive Equations /by Felipe Linares, Gustavo Ponce2nd ed. 2015.New York, NY :Springer New York :Imprint: Springer,2015.1 online resource (XIV, 301 p. 1 illus.)Universitext,0172-5939Bibliographic Level Mode of Issuance: Monograph1-4939-2180-0 1. The Fourier Transform -- 2. Interpolation of Operators -- 3. Sobolev Spaces and Pseudo-Differential Operators -- 4. The Linear Schrodinger Equation -- 5. The Non-Linear Schrodinger Equation -- 6. Asymptotic Behavior for NLS Equation -- 7. Korteweg-de Vries Equation -- 8. Asymptotic Behavior for k-gKdV Equations -- 9. Other Nonlinear Dispersive Models -- 10. General Quasilinear Schrodinger Equation -- Proof of Theorem 2.8 -- Proof of Lemma 4.2 -- References -- Index.This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introduction to Nonlinear Dispersive Equations builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercises. Assuming only basic knowledge of complex analysis and integration theory, this book will enable graduate students and researchers to enter this actively developing field.Universitext,0172-5939Differential equations, PartialPartial Differential Equationshttps://scigraph.springernature.com/ontologies/product-market-codes/M12155Differential equations, Partial.Partial Differential Equations.515.353Linares Felipeauthttp://id.loc.gov/vocabulary/relators/aut505907Ponce Gustavoauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK9910299780203321Introduction to Nonlinear Dispersive Equations2503201UNINA