00933nam0-2200325-i-450-99000847898040332120130423135316.0000847898FED01000847898(Aleph)000847898FED0100084789820070307d1969----km-y0itay50------baitaITy-------001yyAbbreviamo la lunga marcia del processo penalePietro Riccardo ColonnaRoma[s.n.]1969OnetoVII, 343 p.21 cm345.07ita20Colonna,Pietro Riccardo427103ITUNINARICAUNIMARCBK990008478980403321CONTIERI-239dono 4336DSPCPTT 9DDCICPecoraro Albani C1796125DSPCPDSPCPDDCICAbbreviamo la lunga marcia del processo penale730751UNINA02477nam 2200601 450 99646651240331620220218111232.03-540-74776-110.1007/978-3-540-74776-5(CKB)1000000000437247(SSID)ssj0000320730(PQKBManifestationID)11231134(PQKBTitleCode)TC0000320730(PQKBWorkID)10249737(PQKB)11543487(DE-He213)978-3-540-74776-5(MiAaPQ)EBC3062063(MiAaPQ)EBC6863166(Au-PeEL)EBL6863166(PPN)123739683(EXLCZ)99100000000043724720220218d2008 uy 0engurnn|008mamaatxtccrZeta functions of groups and rings /Marcus du Sautoy, Luke Woodward1st ed. 2008.Berlin ;Heidelberg :Springer-Verlag,[2008]©20081 online resource (XII, 212 p.) Lecture Notes in Mathematics ;1925Bibliographic Level Mode of Issuance: Monograph3-540-74701-X Includes bibliographical references (p. [201]-203) and indexes.Nilpotent Groups: Explicit Examples -- Soluble Lie Rings -- Local Functional Equations -- Natural Boundaries I: Theory -- Natural Boundaries II: Algebraic Groups -- Natural Boundaries III: Nilpotent Groups.Zeta functions have been a powerful tool in mathematics over the last two centuries. This book considers a new class of non-commutative zeta functions which encode the structure of the subgroup lattice in infinite groups. The book explores the analytic behaviour of these functions together with an investigation of functional equations. Many important examples of zeta functions are calculated and recorded providing an important data base of explicit examples and methods for calculation.Lecture notes in mathematics (Springer-Verlag) ;1925.Functions, ZetaGroup theoryFunctions, Zeta.Group theory.515.56Du Sautoy Marcus67661Woodward LukeMiAaPQMiAaPQMiAaPQBOOK996466512403316Zeta Functions of Groups and Rings2585860UNISA