00964nam0-22003011--450-99000814373040332120050705144024.0000814373FED01000814373(Aleph)000814373FED0100081437320050705d1852----km-y0itay50------baitagerITy---n---001yyTrattato delle istituzioni del diritto romanoTeodoro Marezolltradotto dall'originale tedesco sulla 4. ed. di Lipsia per Giuseppe PolignaniNapolidalla stamperia di Vincenzo Priggiobba1852XXXIX, 439, XVI p.21 cm340.512 rid.itaMarezoll,Theodor241992Polignani,GiuseppeITUNINARICAUNIMARCBK990008143730403321IV B 131590FGBCFGBCTrattato delle istituzioni del diritto romano757171UNINA05875nam 2201777z- 450 991055758700332120210501(CKB)5400000000043778(oapen)https://directory.doabooks.org/handle/20.500.12854/69316(oapen)doab69316(EXLCZ)99540000000004377820202105d2020 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierMuscle Homeostasis and RegenerationFrom Molecular Mechanisms to Therapeutic OpportunitiesBasel, SwitzerlandMDPI - Multidisciplinary Digital Publishing Institute20201 online resource (500 p.)3-03943-436-5 3-03943-437-3 The book is a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration. One of the most ambitious aspirations of modern medical science is the possibility of regenerating any damaged part of the body, including skeletal muscle. This desire has prompted clinicians and researchers to search for innovative technologies aimed at replacing organs and tissues that are compromised. In this context, the papers, collected in this book, addressing a specific aspects of muscle homeostasis and regeneration under physiopathologic conditions, will help us to better understand the underlying mechanisms of muscle healing and will help to design more appropriate therapeutic approaches to improve muscle regeneration and to counteract muscle diseases.Muscle Homeostasis and Regeneration Biology, life sciencesbicsscResearch and information: generalbicsscacetylcholine receptorAcvr1bagingatrophybiomarkersC2C12 cellscalcium homeostasiscell culturecell precursorsCol1a1confocal microscopyconnexin 26connexin 43CRISPR-Cas9denervationdifferentiationDrosophilaDuchenne muscular dystrophyelectron microscopyevolutionexerciseexon deletionexosomesexperimental methodsextracellular vesiclesFAPsfasciclefibro/adipogenic progenitorsfibrosisgap junctionsgenetic controlgenetic variationgenotypegrowth factorsheavy resistance exerciseheterotopic ossificationhibernationHibernationHO precursorshyperplasiahypertrophyIGF2Rimmunocytochemistryinflammationinflammatory responseiPSClongitudinal growthlysinemacrophagesmass cytometrymetazoansmitochondriamitochondrial dynamicsmitochondrial fissionmitochondrial fusionmitochondrial quality controlmitochondrial-derived vesicles (MDVs)mitochondrial-lysosomal axismitophagymTORC1musclemuscle atrophymuscle differentiationmuscle diversificationmuscle homeostasismuscle pathologymuscle phenotypesmuscle populationsmuscle precursorsmuscle regenerationmuscle satellite cellmuscle stem cellsmusclesmuscular dystrophymyofibermyofibrilmyofibroblastsmyogenesismyogenic progenitorsmyostatinneonatal myosinneural cell adhesion moleculeneuromuscular disordersneuromuscular junctionNF-YNfixpericytesphagocytosispharmacological approachPlatelet-Rich Plasmaproliferationradial growthregenerative medicineRhoA-ROCK1sarcomeresarcopeniasarcoplasmic reticulumsatellite cellssepticemiasingle-cellskeletal muscleskeletal muscle growthskeletal muscle homeostasisskeletal muscle regenerationskeletal muscle stem and progenitor cellssplicing isoformssplittingstem cell markersstem cellsstem cells nicheTgfbr1thyroid hormonetissue nichetransdifferentiationtransforming growth factor (TGF)-β1transthyretinα-smooth muscle actinBiology, life sciencesResearch and information: generalMusarò Antonioedt1318574Musarò AntonioothBOOK9910557587003321Muscle Homeostasis and Regeneration3033418UNINA