00977nam2-22003251i-450-99000790758040332120040720110248.03-8114-6897-9000790758FED01000790758(Aleph)000790758FED0100079075820040720d1999----km-y0itay50------bagerDEy-------001yyRechtsvergleichende SchriftenGustav Radbruchbearbeitet von Heinrich SchollerHeidelbergC. F. Müllerc1999483 p.24 cm0010007907382001Gesamtausgabe / Gustav Radbruch001534020DIRITTORadbruch,Gustav225629Scholler,HeinrichITUNINARICAUNIMARCBK990007907580403321XI CL R 4(14)1905Dip.to Filosofia dei DirittiDFDRechtsvergleichende Schriften670138UNINA04085nam 22006255 450 991104907670332120260102120637.03-032-06740-510.1007/978-3-032-06740-1(CKB)44770159700041(MiAaPQ)EBC32470319(Au-PeEL)EBL32470319(DE-He213)978-3-032-06740-1(EXLCZ)994477015970004120260102d2026 u| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierAdvanced Digital Signal Processing Methods for Filtering, Identification, and Nonlinear Systems Control /by Rimantas Pupeikis, Kazys Kazlauskas1st ed. 2026.Cham :Springer Nature Switzerland :Imprint: Springer,2026.1 online resource (249 pages)Studies in Systems, Decision and Control,2198-4190 ;6383-032-06739-1 1. Introdution -- 2. High Speed Least Mean Square Adaptive Filtering -- 3. Optimal Parametri Identi ation of Linear Periodially Time-variant Systems -- 4. Iterative Parametric Identiation Algorithm of Autoregression -- 5. Layered Polynomial Filter Strutures -- 6. Exploring the Potentiality of Nonlinear Systems for Minimum Variane Control -- 7. Parametri Identiation of Systems with Pieewise-linear Nonlinearities -- 8. Parametri Identiation of Systems with Deadzones -- 9. Controlled Wiener System Simulation -- A Consistent parametri identiation -- Examples of the use of DSP methods for modelling, ltering, identiation, and control.This book presents a general approach to block and recursive filtering, identification, and control, using signal observations processing techniques, and among others provides to the reader these results: The new version of least square algorithm that is speeded up without changing its adaptive characteristics, increasing the parallelism in algorithm. The efficient lower triangular inverse matrix and the input signal covariance matrix computation method. The original bias correction approach that is used to eliminate the parameter estimation bias of an iterative autoregressive system parameter estimation algorithm in the presence of additive white noise. The discovery that nonlinear Volterra, polynomial autoregressive and bilinear systems have the same layered implementation routine, which allows us using the layered structure, the order of nonlinearity increased/decreased by adding/deleting more layers to/from the structure. The proven statement that the modular layered structures admit the very large scale integration implementation of the polynomial nonlinear filters. The book is aimed at three major groups of readers: senior undergraduate students, graduate students, and scientific research workers in electrical engineering, computer engineering, computer science, and digital control.Studies in Systems, Decision and Control,2198-4190 ;638DynamicsNonlinear theoriesAutomatic controlEngineering mathematicsEngineeringData processingApplied Dynamical SystemsControl and Systems TheoryMathematical and Computational Engineering ApplicationsDynamics.Nonlinear theories.Automatic control.Engineering mathematics.EngineeringData processing.Applied Dynamical Systems.Control and Systems Theory.Mathematical and Computational Engineering Applications.515.39Pupeikis Rimantas1887133Kazlauskas Kazys1887134MiAaPQMiAaPQMiAaPQBOOK9911049076703321Advanced Digital Signal Processing Methods for Filtering, Identification, and Nonlinear Systems Control4523040UNINA