00962nam0-22003251i-450-99000654788040332120141020090258.0000654788FED01000654788(Aleph)000654788FED0100065478820010426d--------km-y0itay50------baitay---n---001yyCODICE di diritto internazionaleraccolta annotata e commentata di leggi, trattati e prassi di uso attuale(A cura di)Massimo PanebiancoSalernoEdisud1989.394 p. 17 cm34011 rid.itaPanebianco,MassimoITUNINARICAUNIMARCBK990006547880403321DI XI-1408163DECXXX COD. 63017667FSPBCT 7428 ; 431 ; 427DSIDECFSPBCDSICODICE di diritto internazionale619108UNINA02835nam 2200661Ia 450 991045690010332120200520144314.01-282-44094-29786612440946981-281-905-3(CKB)2550000000001847(EBL)477134(OCoLC)557658082(SSID)ssj0000337615(PQKBManifestationID)11929326(PQKBTitleCode)TC0000337615(PQKBWorkID)10293166(PQKB)10563801(MiAaPQ)EBC477134(WSP)00000854 (Au-PeEL)EBL477134(CaPaEBR)ebr10361799(CaONFJC)MIL244094(EXLCZ)99255000000000184720080910d2009 uy 0engur|n|---|||||txtccrFat manifolds and linear connections[electronic resource] /Alessandro De Paris, Alexandre VinogradovHackensack, NJ World Scientificc20091 online resource (310 p.)Description based upon print version of record.981-281-904-5 Includes bibliographical references (p. 281-282) and index.Preface; Foreword; Contents; 0. Elements of Differential Calculus over Commutative Algebras; 1. Basic Differential Calculus on Fat Manifolds; 2. Linear Connections; 3. Covariant Differential; 4. Cohomological Aspects of Linear Connections; Bibliography; List of Symbols; IndexIn this unique book, written in a reasonably self-contained manner, the theory of linear connections is systematically presented as a natural part of differential calculus over commutative algebras. This not only makes easy and natural numerous generalizations of the classical theory and reveals various new aspects of it, but also shows in a clear and transparent manner the intrinsic structure of the associated differential calculus. The notion of a "fat manifold" introduced here then allows the reader to build a well-working analogy of this "connection calculus" with the usual one.Differential calculusCommutative algebraManifolds (Mathematics)Algebras, LinearElectronic books.Differential calculus.Commutative algebra.Manifolds (Mathematics)Algebras, Linear.515/.33516.35De Paris Alessandro918503Vinogradov A. M(Aleksandr Mikhaĭlovich)918504MiAaPQMiAaPQMiAaPQBOOK9910456900103321Fat manifolds and linear connections2059643UNINA01221nam0 22003253i 450 CAG084070720231121125421.020150310d1992 ||||0itac50 baitaitz01i xxxe z01nArmando Borghi e gli anarchici italiani, 1900-1922Emilio Falcoprefazione di Enzo SantarelliRomaEdizioni Associate1992X, 235 p.21 cm.Il presente come storia001RAV01711632001 Il presente come storiaBorghi, ArmandoFIRRMLC230385IAnarchiaItalia1900-1922FIRRMLC290686I335.83094521Falco, EmilioMILV006618070560383Santarelli, EnzoCFIV006303ITIT-0120150310IT-FR0017 Biblioteca umanistica Giorgio ApreaFR0017 NCAG0840707Biblioteca umanistica Giorgio Aprea 52DES 335 Fal.Arm. 52FLS0000376565 VMB RS A 2015031020150310 52Armando Borghi e gli anarchici italiani, 1900-19223604239UNICAS03158nam 2200613 450 991078884530332120170918220737.01-4704-0331-5(CKB)3360000000464922(EBL)3114551(SSID)ssj0000973573(PQKBManifestationID)11516433(PQKBTitleCode)TC0000973573(PQKBWorkID)10959885(PQKB)11069646(MiAaPQ)EBC3114551(RPAM)12501774(PPN)195416244(EXLCZ)99336000000046492220010814h20022002 uy| 0engur|n|---|||||txtccrGeneralized Whittaker functions on SU(2,2) with respect to the Siegel parabolic subgroup /Yasuro GonProvidence, Rhode Island :American Mathematical Society,[2002]©20021 online resource (130 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 738"January 2002.""Volume 155, number 738 (fourth of 5 numbers)."0-8218-2763-4 Includes bibliographical references (pages 115-116).""Contents""; ""Chapter 1. Introduction""; ""1. Introduction""; ""Chapter 2. Generalized Whittaker functions and representation theory of SU(2,2)""; ""2. Definition of the generalized Whittaker functions""; ""3. Structure theory for SU(2,2) and its Lie algebra""; ""4. Representations of K""; ""5. Irreducible SU(Î?)-modules""; ""6. Explicit description of Whittaker functions""; ""7. Radial part of the shift operators""; ""Chapter 3. Generalized Whittaker functions for P[sub(J)] principal series representations""; ""8. Generalized Whittaker functions for P[sub(J)]-principal series""""Chapter 4. Generalized Whittaker functions for the discrete series representations""""9. Generalized Whittaker functions for the discrete series representations""; ""10. Generalized Whittaker functions for the holomorphic discrete series representations""; ""11. Generalized Whittaker functions for the large discrete series representations""; ""12. Generalized Whittaker functions for the middle discrete representations""; ""13. Generalized Whittaker functions for the middle discrete series associated with definite H[sub(Î?)]""""14. Generalized Whittaker functions for the middle discrete series associated with indefinite H[sub(Î?)]""""Bibliography""Memoirs of the American Mathematical Society ;no. 738.Coulomb functionsForms, ModularRepresentations of groupsCoulomb functions.Forms, Modular.Representations of groups.510 s512/.73Gon Yasuro1566855MiAaPQMiAaPQMiAaPQBOOK9910788845303321Generalized Whittaker functions on SU(2,2) with respect to the Siegel parabolic subgroup3837781UNINA