00934nam0-2200325---450-99000585451040332120150710104533.00-520-05789-9000585451FED01000585451(Aleph)000585451FED0100058545119990604d1988----km-y0itay50------baengUSy-------001yyLanguage contact, creolization, and genetic linguisticsSarah Grey Thomason and Terrence KaufmanBerkeley [etc.]University of California Press[1988]XI, 411 p.24 cmLingue creoleLingue pidgin417.22Thomason,Sarah Grey168450Kaufman,TerrenceITUNINARICAUNIMARCBK990005854510403321417.22 THO 1Fil. Mod. 4184FLFBCFLFBCUNINA01233nam--2200373---450-99000314505020331620080916140052.084-8489-287-5000314505USA01000314505(ALEPH)000314505USA0100031450520080916d2006----km-y0itay50------baspaES||||||||001yyEdad de oro Cantabrigenseactas del 7. Congreso de la Asociacion internacional del siglo de oro (AISO)(Robinson College, Cambridge, 18-22 julio, 2005)Anthony Close, editorcon la colaboracion de Sandra M.a Fernández ValesMadridAISO2006632 p.ill.24 cm20012001001-------2001Letteratura spagnolaCongressiCambridge2005860.9CLOSE,AnthonyCongreso de la Asociacion internacional del siglo de oro<7.<2005;Cambridge>ITsalbcISBD990003145050203316II.5.B.1028680 DSLLBKDSLLDSLL9020080916USA011400Edad de oro Cantabrigense1018598UNISA01153nam--2200373---450-99000276604020331620101217101152.088-14-13043-4000276604USA01000276604(ALEPH)000276604USA0100027660420060623d2006----km-y0enga50------baitaITy|||z|||001yyManuale di diritto delle assicurazioniAntigono Donati, Giovanna Volpe Putzolu8. ed. aggiornataMilanoGiuffrècopyr. 2006XXIX, 264 p.23 cmAssicurazioniDiritto346.45086DONATI,Antigono117965VOLPE PUTZOLU,Giovanna117966ITsalbcISBD990002766040203316XXV.3.C. 156 (IG II 1173 D)50704 G.XXV.3.C. 156 (IG II)00178735BKGIURENATO9020060623USA011053RSIAV19020090723USA011612RSIAV29020101217USA011011Manuale di diritto delle assicurazioni37265UNISA05307nam 2200637Ia 450 99620286210331620230617035840.01-282-31343-697866123134310-470-29480-90-470-29524-4(CKB)1000000000687823(EBL)702497(SSID)ssj0000715073(PQKBManifestationID)11386723(PQKBTitleCode)TC0000715073(PQKBWorkID)10700422(PQKB)10115620(MiAaPQ)EBC702497(OCoLC)475715991(EXLCZ)99100000000068782319800111d2003 uy 0engur|n|---|||||txtccr27th international Cocoa Beach Conference on Advanced Ceramics and Composites[electronic resource] January 26-31, 2003, Cocoa Beach, FLoridaA /Waltraud M. Kriven, Hau-Tay Lin, editorsWesterville, OH American Ceramic Society20031 online resource (667 p.)Ceramic engineering and science proceedings ;24/3Description based upon print version of record.0-470-37583-3 Includes bibliographical references.27th International Cocoa Beach Conference on Advanced Ceramics and Composites: A; Contents; Preface; Perspectives of Field-Enhanced Processes for the Preparation of Nanomaterials; Aerosol Deposition for Nanocomposite Material Synthesis: - A Novel Method of Ceramics Processing Without Firing; Processing of Nanocrystalline Diamond Films by Microwave Plasma CVD; Synthesis of Nanocrystalline Silicon Carbide Powders; Processing of Nanocrystalline Hafnium Carbide Powders; Processing of Nanocrystalline Zirconium Carbide Powders; Synthesis of Hydroxyapatite/Alumina Nanocomposites via MicroemulsionsCarbide Derived Carbon (CDC) Coatings for Tyranno ZMI Sic FibersSynthesis and Magnetic Characterization of Superconductive YBa,Cu,O, Ceramics of Weakly Coupled Nano-Scale Grains; Manufacturing of Zirconia Components by Electrophoretic Deposition of Nanosized Powders; Near-Shape Manufacturing of Ceramics and Glasses by Electrophoretic Deposition using Nanosized Powders; Preparation of Polycrystalline Ceramic Compacts Made of Alumina Powder with a Bimodal Particle Size Distribution for Hot Isostatic Pressing; Precision Microgear Fabrication and Sintering with MicrowavesSynthesis of ZnO Nanopowders by Controlled Double-Jet PrecipitationSynthesis of Nanostructured Mullite and Mullite-Zirconia Ceramic Composite Powders by Using a Modified and Cost Effective Sol-Gel Method; Nanostructured Materials Based on Alumina; Characterization of Epitaxial Barium Titanate Films Deposited under Hydrothermal Conditions; Details of Urea Decomposition in the Presence of Transition Metal Ions; Gel Casting of Ceramic Foams; Processing of Biomorphous Tic-Based Ceramics; Synthesis of Non-Permeable Porous Ceramics by Mixing Ceramic Hollow Micro SpheresCeramic Spheres Derived from Cation Exchange BeadsTensile Evaluation of Ceramic Foam Ligaments; Utilization of Diatomite as a Desiccant Aid; Assessment of Damage Tolerance for Porous Ceramics; Fracture Behavior of Sic-Based, Clay-Bonded Hot Gas Filters; 30 Image Construction of Porous Ceramics by X-Ray CT and Stress Distribution Analyses using Voxel Mesh Method; 3 Dimensional CT Analyses of Bone Formation in Porous Ceramic Biomaterials; Influence of Grinding Fluids on the Abrasive Machining of a Micaceous Glass CeramicWear Characterization of Clinically used Hip Joint Prostheses by a HIP SimulatorFabrication of Biocompatible Calcium Phosphate Ceramics Using Eggshell; Calcium Aluminate/Calcium Phosphate Composite Orthopedic Bone Cement; Fabrication of Composite for Bone Repairing from Alpha-tricalcium Phosphate and Hydroxypropylcellulose; Preparation of Bioactive Inorganic-Organic Hybrids by Hot Water Treatment; Bioactive Titania Gel-Derived from Combined Chemical and Thermal Treatments of TitaniumApatite Formation on the PMMA Bone Cement Modified with Alkoxysilane and Calcium Salt in a Simulated Body FluidThis volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.Ceramic engineering and science proceedings ;24/3.CeramicsCongressesComposite materialsCongressesCeramicsComposite materials666Kriven Waltraud M854274Lin Hua-Tay867103MiAaPQMiAaPQMiAaPQBOOK99620286210331627th international Cocoa Beach conference on advanced ceramics and composites3064548UNISA10800nam 22005413 450 991099387810332120250405060240.0978139436188513943618829781394361892139436189097813943618781394361874(MiAaPQ)EBC31983282(Au-PeEL)EBL31983282(CKB)38218049500041(OCoLC)1513328612(EXLCZ)993821804950004120250405d2025 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierEmerging Materials for Photodegradation and Environmental Remediation of Micro- and Nano-Plastics Recent Developments and Future Prospects1st ed.Newark :John Wiley & Sons, Incorporated,2025.©2025.1 online resource (0 pages)ISTE Invoiced Series9781836690092 1836690096 Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Acknowledgments -- Chapter 1. Micro- and Nano-Plastic Pollution: Present Status on Environmental Issues and Photocatalytic Degradation -- 1.1. Introduction -- 1.2. MPs and NPs: Sources, impact and health hazards -- 1.2.1. Micro-plastics -- 1.3. Nano-plastics -- 1.3.1. Sources and environmental risks -- 1.4. Impact of Covid-19 on plastic pollution -- 1.5. Methods for plastic degradation -- 1.5.1. Current methods for plastic degradation -- 1.5.2. Emerging solutions for plastic degradation -- 1.6. Conclusion -- 1.7. Future directions for plastic pollution control -- 1.8. References -- Chapter 2. Metal Oxide-based Smart Materials for Photocatalytic Degradation of Micro- and Nano-Plastics -- 2.1. Introduction -- 2.2. Metal oxide photocatalysts and their characteristics -- 2.2.1. TiO2 -- 2.2.2. ZnO -- 2.2.3. CuO -- 2.2.4. NiO -- 2.3. Conclusion and future prospectives -- 2.4. Acknowledgments -- 2.5. References -- Chapter 3. WO3-based Smart Material for Photocatalytic Degradation of Micro- and Nano-Plastic -- 3.1. Overview of micro- and nano-plastics -- 3.2. Photocatalytic degradation mechanism -- 3.3. Tungsten trioxide (WO3) -- 3.3.1. (WO3)-based smart materials -- 3.3.2. Synthesis of WO3-based smart material -- 3.3.3. A few WO3-based smart materials -- 3.4. Applications and future scope -- 3.5. References -- Chapter 4. The Chemistry of Carbon Nanotubes in Photocatalytic Degradation of Micro- and Nano-Plastic -- 4.1. Introduction -- 4.2. Micro- and nano-plastic -- 4.3. Carbon nanotube materials -- 4.4. Coating of carbon nanotube as photocatalytic degradation materials -- 4.4.1. TiO2 coating -- 4.4.2. ZnO coating -- 4.5. Functionalized carbon nanotube as photocatalytic degradation materials -- 4.5.1. Single wall carbon nanotube -- 4.5.2. Multiwall carbon nanotube.4.5.3. Noncovalent endohedral and exohedral functionalization with surfactants -- 4.5.4. Graphene-functionalized carbon nanotube -- 4.6. Hetero atom doping of carbon nanotube as photocatalytic degradation material -- 4.7. Conclusion -- 4.8. References -- Chapter 5. Environmental Justifications of MXene towards Photocatalytic Capture and Conversion of Micro- and Nano-Plastic -- 5.1. Introduction -- 5.2. Nanomaterial catalyzed methods for the degradation of micro- and nano-plastics -- 5.3. Photocatalytic degradation of micro- and nano-plastics -- 5.4. MXene: a nanomaterial with diverse applications -- 5.5. Important properties of MXenes -- 5.6. Application of MXene as photocatalyst -- 5.7. Application of MXene-based materials for the degradation of organic pollutants -- 5.8. MXene as photocatalyst for degradation of MPs and NPs -- 5.9. Conclusion -- 5.10. References -- Chapter 6. Metal-Organic Framework based on Functional Materials for Photocatalytic Degradation of Micro- and Nano-Plastic -- 6.1. Introduction -- 6.2. Historical background and discovery of metal-organic frameworks -- 6.3. Bonding in metal-organic frameworks -- 6.4. Dimensionality of metal-organic frameworks -- 6.5. Methods for the synthesis of metal-organic frameworks -- 6.5.1. Ultrasonic synthesis -- 6.5.2. Electrochemical synthesis -- 6.5.3. Mechanochemical synthesis -- 6.5.4. Microwave synthesis -- 6.6. Properties of metal-organic frameworks -- 6.7. Micro- and nano-plastics -- 6.7.1. Photocatalytic degradation of micro- and nano-plastics -- 6.7.2. Mechanism of photocatalytic degradation -- 6.7.3. Changes in micro-/nano-plastics morphology in photocatalytic degradation -- 6.8. Factors influencing photocatalytic degradation efficiency -- 6.9. Role of micromotors in photocatalytic degradation of MPs/NPs.6.10. Photocatalytic water purification: removal of micro- and nano-plastics from water -- 6.10.1. Photocatalytic degradation of polyethylene terephthalate nano-plastics -- 6.10.2. Photodisintegration of emerging pollutants -- 6.11. References -- Chapter 7. Carbon-based Materials for Photocatalytic Degradation of Micro- and Nano-plastics -- 7.1. Introduction -- 7.2. Classification of carbon-based nanomaterials -- 7.2.1. Carbon nanotubes -- 7.2.2. Single-walled carbon nanotubes -- 7.2.3. Double-walled carbon nanotubes -- 7.2.4. Multi-walled carbon nanotubes -- 7.2.5. Fullerene -- 7.2.6. Nanodiamonds -- 7.2.7. Carbon dots -- 7.2.8. Graphene -- 7.2.9. Graphene nanoribbons -- 7.2.10. Graphene quantum dots -- 7.3. An overview of photocatalysts' breakdown of MPs and NPs -- 7.4. Carbonaceous nanomaterials -- 7.4.1. Graphene, RGO (reduced graphene oxide) and GO -- 7.4.2. Carbon nanotubes -- 7.4.3. Nano-graphite -- 7.4. Conclusion -- 7.5. References -- Chapter 8. Graphene-based Materials for Photodegradation of Micro- and Nano-Plastics -- 8.1. Introduction -- 8.1.1. Overview of micro-plastics -- 8.1.2. Overview of nano-plastics -- 8.1.3. Environmental impact of micro- and nano-plastics -- 8.1.4. Better alternatives to plastics -- 8.1.5. Status of plastic recycling in India with other countries -- 8.2. Graphene-based materials -- 8.3. Structure and characteristics of graphene-based materials -- 8.4. Photodegradation and graphene-based materials -- 8.5. Application of GMBs in removal/degradation/remediation of different pollutants -- 8.6. Photodegradation of micro- and nano-plastics by graphene-based materials -- 8.7. Challenges and future perspectives -- 8.8. Environmental fate of graphene-based materials -- 8.9. Conclusion -- 8.10. References -- Chapter 9. 2D Nanomaterials for Photocatalytic Degradation of Micro- and Nano-Plastics -- 9.1. Introduction.9.2. 2D materials -- 9.2.1. Graphene family -- 9.2.2. Transition metal dichalcogenides and MXenes -- 9.2.3. Phosphorene -- 9.2.4. Oxides and hydroxide materials -- 9.3. Synthesis of 2D materials -- 9.4. Properties and applications of 2D materials -- 9.5. Application of 2D materials in photocatalytic degradation -- 9.6. Micro- and nano-plastics -- 9.7. Micro- and nano-plastics identification -- 9.7.1. Microscopy: stereo microscopy and dissecting microscopy -- 9.7.2. Fluorescence microscopy -- 9.7.3. Transmission electron microscopy -- 9.7.4. Scanning electron microscopy -- 9.7.5. Atomic force microscopy -- 9.7.6. FTIR spectroscopy -- 9.7.7. Raman spectroscopy -- 9.7.8. Thermal analysis -- 9.7.9. New approaches and new identification strategies -- 9.7.10. Impact of micro- and nano-plastics on human health -- 9.8. Photocatalytic degradation of micro- and nano-plastic -- 9.9. Photocatalytic degradation of micro- and nano-plastic through 2D materials -- 9.10. Summary and conclusion -- 9.11. Acknowledgments -- 9.12. References -- Chapter 10. Hybrid 2D-Smart Materials in Photocatalytic Degradation of Micro- and Nano-Plastics -- 10.1. Introduction -- 10.2. 2D materials: properties and functionalities -- 10.2.1. Electronic properties -- 10.2.2. Optical properties -- 10.2.3. Mechanical properties -- 10.2.4. Thermal properties -- 10.2.5. Chemical properties and functionalization -- 10.2.6. Synergistic effects in hybrid 2D materials -- 10.3. Hybrid 2D-smart materials: design and synthesis -- 10.3.1. Synthesis techniques -- 10.3.2. Examples of hybrid 2D-smart materials -- 10.4. Mechanisms of photocatalytic degradation of micro- and nano-plastics -- 10.4.1. Initiation of degradation -- 10.4.2. Role of photocatalyst morphology and composition -- 10.4.3. Pathways of degradation -- 10.4.4. Environmental factors and degradation efficiency.10.5. Degradation of micro-plastics in marine environments -- 10.5.1. Photocatalytic degradation of nano-plastics in wastewater treatment -- 10.5.2. Integration of photocatalytic coatings in water purification systems -- 10.5.3. Photocatalytic degradation of micro-plastics in agricultural soils -- 10.6. Challenges, limitations and future scopes -- 10.7. Conclusions -- 10.8. References -- Chapter 11. Design and Structural Modification of Advanced Biomaterials for Photocatalytic Degradation of Micro- and Nano-Plastics -- 11.1. Introduction -- 11.1.1. Plastic pollution: a global challenge -- 11.1.2. Photocatalytic degradation: a green approach -- 11.2. Smart biomaterials: overview and selection criteria -- 11.2.1. Definition and characteristics of smart biomaterials -- 11.2.2. Selection criteria for smart biomaterials -- 11.3. Design principles for enhanced photocatalysis -- 11.3.1. Tailoring optical properties -- 11.3.2. Surface functionalization for targeted activity -- 11.4. Structural modifications for improved efficiency -- 11.4.1. Nanocomposite formation -- 11.4.2. Porosity enhancement -- 11.5. Case studies and applications -- 11.5.1. Titanium dioxide nanomaterials -- 11.5.2. Graphene-based smart biomaterials -- 11.6. Challenges and future perspectives -- 11.6.1. Overcoming biocompatibility concerns -- 11.6.2. Scalability and cost-effectiveness -- 11.6.3. Integration with other remediation techniques -- 11.7. Conclusion -- 11.8. References -- Chapter 12. Nanocomposites: Sustainable Resources for Photodegradation of Micro- and Nano-Plastics -- 12.1. Introduction -- 12.1.1. Addressing environmental challenges with nanocomposites -- 12.2. Photocatalytic degradation of micro- and nano-plastics -- 12.3. Nanocomposites in environmental remediation -- 12.3.1. Understanding nanocomposites.12.3.2. Enhanced mechanical, thermal, electrical and optical properties.ISTE Invoiced SeriesSingh Laxman1812169Kumar Sunil868762MiAaPQMiAaPQMiAaPQBOOK9910993878103321Emerging Materials for Photodegradation and Environmental Remediation of Micro- and Nano-Plastics4364459UNINA