00915cam0-2200313---450-99000582972040332120120227160429.00-631-19856-3000582972FED01000582972(Aleph)000582972FED0100058297219990604d1996----km-y0itay50------baengy-------001yy<<An >>introduction to Japanese linguisticsNatsuko TsujimuraCambridge (Mass.)Blackwell1996XIII, 401 p.28 cmBlackwell textbooks in linguistics10Lingua giapponese495.6Tsujimura,Natsuko221766ITUNINARICAUNIMARCBK990005829720403321495.6 TSU 1DIP.FIL.MOD. 9440FLFBCFLFBCIntroduction to Japanese linguistics566946UNINA03283nam 22006135 450 991025739920332120250731103432.03-540-68495-610.1007/978-3-540-68495-4(CKB)1000000000778025(SSID)ssj0000321685(PQKBManifestationID)12133493(PQKBTitleCode)TC0000321685(PQKBWorkID)10279800(PQKB)10471400(DE-He213)978-3-540-68495-4(MiAaPQ)EBC3087730(MiAaPQ)EBC6485721(PPN)155236458(EXLCZ)99100000000077802520121227d1997 u| 0engurnn|008mamaatxtccrBosonization of Interacting Fermions in Arbitrary Dimensions /by Peter Kopietz1st ed. 1997.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,1997.1 online resource (XII, 259 p. 3 illus.) Lecture Notes in Physics Monographs ;48Bibliographic Level Mode of Issuance: Monograph3-540-62720-0 Includes bibliographical references and index.Development of the formalism -- Fermions and the Fermi surface -- Hubbard-Stratonovich transformations -- Bosonization of the Hamiltonian and the density-density correlation function -- The single-particle Green’s function -- Applications to physical systems -- Singular interactions (f q ? /q/?? ) -- Quasi-one-dimensional metals -- Electron-phonon interactions -- Fermions in a stochastic medium -- Transverse gauge fields.The author presents in detail a new non-perturbative approach to the fermionic many-body problem, improving the bosonization technique and generalizing it to dimensions d>1 via functional integration and Hubbard--Stratonovich transformations. In Part I he clearly illustrates the approximations and limitations inherent in higher-dimensional bosonization and derives the precise relation with diagrammatic perturbation theory. He shows how the non-linear terms in the energy dispersion can be systematically included into bosonization in arbitrary d, so that in d>1 the curvature of the Fermi surface can be taken into account. Part II gives applications to problems of physical interest, such as coupled metallic chains, electron-phonon interactions, disordered electrons, and electrons coupled to transverse gauge fields. The book addresses researchers and graduate students in theoretical condensed matter physics.Lecture Notes in Physics Monographs ;48Mathematical physicsCondensed matterMathematical Methods in PhysicsCondensed Matter PhysicsMathematical physics.Condensed matter.Mathematical Methods in Physics.Condensed Matter Physics.530.143Kopietz Peter1961-61187MiAaPQMiAaPQMiAaPQBOOK9910257399203321Bosonization of Interacting Fermions in Arbitrary Dimensions375664UNINA