00876nam0-22003131i-450-99000567085040332120051128111534.08772881666000567085FED01000567085(Aleph)000567085FED0100056708519990604d 198----km-y0itay50------baengy-------001yyRoman art and Imperial PolicyNiels HannestadAarhus University Pressc 1988481 p.30 cm709.3721itaHannestad,Niels218098ITUNINARICAUNIMARCBK990005670850403321709.37 HAN 1DIP.DISC.ST. 2967FLFBCDDR-XVII Da 2011112 ddrDDR21-5000FLFBCDDRRoman art and Imperial Policy601628UNINA02205nam0 22004813i 450 VAN0025541720240806101444.301N978354036880920230228d1971 |0itac50 baengDE|||| |||||ˆThe ‰Concordance-Homotopy Groups of Geometric Automorphism GroupsPeter L. Antonelli, Dan Burghelea, Peter J. KahnBerlinSpringer1971x, 140 p.24 cm001VAN001022502001 Lecture notes in mathematics210 Berlin [etc.]Springer21555P15Classification of homotopy type [MSC 2020]VANC033621MF57-XXManifolds and cell complexes [MSC 2020]VANC019671MF57N65Algebraic topology of manifolds [MSC 2020]VANC024064MF57N70Cobordism and concordance in topological manifolds [MSC 2020]VANC037371MF57Q60Cobordism and concordance in PL-topology [MSC 2020]VANC037372MF57R19Algebraic topology on manifolds and differential topology [MSC 2020]VANC024168MFAutomorphism groupsKW:KGeometric Automorphism GroupsKW:KGroupsKW:KHomotopyKW:KHomotopy GroupsKW:KMorphismKW:KProofsKW:KTheoremKW:KBerlinVANL000066AntonelliPeter L.VANV20843454081BurgheleaDanVANV20843545451KahnPeter J.VANV20843754082Springer <editore>VANV108073650ITSOL20241115RICAhttps://doi.org/10.1007/BFb0061176E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00255417BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD -book 5589 08eMF5589 20230313 Concordance-homotopy groups of geometric automorphism groups81186UNICAMPANIA