01060nam0-22002891i-450-99000542291040332119990530000542291FED01000542291(Aleph)000542291FED0100054229119990530d1909----km-y0itay50------balaty-------001yyDispacci e lettere di Giacomo Gherardi nunzio pontificio a Firenze e Milano (11 settembre 1487-10 ottobre 1490)ora per la prima volta pubblicati e illustrati dal sacerdote Dr. Enrico CarusiRomaTip. Poliglotta Vaticana1909CLXXVII, 723 p.25 cmStudi e testi21Gherardi,Giacomo210201Carusi,Enrico<1878-1945>ITUNINARICAUNIMARCBK990005422910403321ST. MED. MOD. 1825ST. MED. MOD. 2231FLFBCFLFBCDispacci e lettere di Giacomo Gherardi nunzio pontificio a Firenze e Milano (11 settembre 1487-10 ottobre 1490590213UNINA03441nam 22006015 450 991098769480332120251107141638.09789819630028981963002910.1007/978-981-96-3002-8(CKB)37916507900041(DE-He213)978-981-96-3002-8(MiAaPQ)EBC31960070(Au-PeEL)EBL31960070(EXLCZ)993791650790004120250314d2025 u| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierNon-Kähler Complex Surfaces and Strongly Pseudoconcave Surfaces /by Naohiko Kasuya1st ed. 2025.Singapore :Springer Nature Singapore :Imprint: Springer,2025.1 online resource (X, 121 p. 16 illus., 5 illus. in color.)SpringerBriefs in Mathematics,2191-82019789819630011 9819630010 Chapter 1.Preliminaries -- Chapter 2. Compact Complex Surfaces -- Chapter 3. Elliptic Surfaces and Lefschetz Fibrations -- Chapter 4. Non-Kähler Complex Structures on R2� -- Chapter 5. Strongly Pseudoconvex Manifolds -- Chapter 6. Contact Structures -- Chapter 7. Strongly Pseudoconcave Surfaces and Their Boundaries.The main themes of this book are non-Kähler complex surfaces and strongly pseudoconcave complex surfaces. Though there are several notable examples of compact non-Kähler surfaces, including Hopf surfaces, Kodaira surfaces, and Inoue surfaces, these subjects have been regarded as secondary to Kähler manifolds and strongly pseudoconvex manifolds. Recently, however, the existence of uncountably many non-Kähler complex structures on the 4-dimensional Euclidean space has been shown by Di Scala, Kasuya, and Zuddas through their construction. Furthermore, Kasuya and Zuddas' handlebody construction reveals that strongly pseudoconcave surfaces have flexibility with respect to both four-dimensional topology and boundary contact structures. These constructions are based on the knowledge of differential topology and contact geometry, and provide examples of fruitful applications of these areas to complex geometry. Thus, for (especially non-compact) non-Kähler complex surfaces and strongly pseudoconcave complex surfaces, it is not an exaggeration to say that the research is still in its infancy, with numerous areas yet to be explored and expected to develop in the future.SpringerBriefs in Mathematics,2191-8201Functions of complex variablesTopologySeveral Complex Variables and Analytic SpacesTopologyFuncions de variables complexesthubTopologiathubLlibres electrònicsthubFunctions of complex variables.Topology.Several Complex Variables and Analytic Spaces.Topology.Funcions de variables complexesTopologia515.94Kasuya Naohikoauthttp://id.loc.gov/vocabulary/relators/aut1803315MiAaPQMiAaPQMiAaPQBOOK9910987694803321Non-Kähler Complex Surfaces and Strongly Pseudoconcave Surfaces4350109UNINA