02132nam0 2200457 i 450 VAN009815520211109121820.589N978331900819620140616d2013 |0itac50 baengCH|||| |||||ˆAn ‰introduction to the Kähler-Ricci flowSebastien Boucksom, Philippe Eyssidieux, Vincent Guedj editorsChamSpringer2013VIII, 333 p.ill.24 cm001VAN01022502001 Lecture notes in mathematics210 Berlin [etc.]Springer2086VAN0234043ˆAn ‰introduction to the Kähler-Ricci flow25866732Q15Kähler manifolds [MSC 2020]VANC021365MF14E30Minimal model program (Mori theory, extremal rays) [MSC 2020]VANC023882MF32Q25Calabi-Yau theory (complex-analytic aspects) [MSC 2020]VANC024003MF35K96Parabolic Monge-Ampère equations [MSC 2020]VANC029383MF32Q20Kähler-Einstein manifolds [MSC 2020]VANC029384MFComplex Monge-Ampére equationsKW:KKähler-Ricci flowKW:KMinimal Model ProgramKW:KParabolic equationsKW:KPartial differential equationsKW:KPerleman's estimatesKW:KCHChamVANL001889BoucksomSebastienVANV077488EyssidieuxPhilippeVANV077489GuedjVincentVANV071018Springer <editore>VANV108073650ITSOL20240614RICAhttp://doi.org/10.1007/978-3-319-00819-6E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN0098155BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 08LNM2086 20140616 Introduction to the Kähler-Ricci flow258667UNICAMPANIA00828nam0-22002771i-450 99000535226040332120260116133004.0FED0100053522619990604f1917----km-y0itay50------baitagrcITa-------000yyPrometeoEschilocommentato ad uso delle scuole italiane da Nicola TerzaghiMilano [etc.]Remo Sandron1917XCVI, 182 p.ill.20 cmTragoediaePrometheus vinctus18700882.01Aeschylus<ca. 525/4-458/6 a. C.>153340Terzaghi,NicolaITUNINARICAUNIMARCBK990005352260403321P2B 610 AES 07 (2)ARCH. 13755FLFBCFLFBCTragoediae18700UNINA