00927nam0-22003011i-450-99000511806040332120061116111419.0000511806FED01000511806(Aleph)000511806FED0100051180619990604g19519999km-y0itay50------baitay-------001yyEnthusiasma chapter in the history of religionR. A. KnoxWith special reference to the XVII and XVIII centuriesOxfordAt the Clarendon Press1951.VIII, 622 p.23 cmChiesaSec. 17.-18.EntusiasmoConcezione cristiana270.721itaKnox,Ronald Arbuthnott<1888-1957>100059ITUNINARICAUNIMARCBK990005118060403321270.7 KNO 1s.i.FLFBCFLFBCEnthusiasm533923UNINA07901nam 22008295 450 991034926100332120251225202156.09783319748962331974896310.1007/978-3-319-74896-2(CKB)4100000002045896(DE-He213)978-3-319-74896-2(MiAaPQ)EBC6284250(MiAaPQ)EBC5592588(Au-PeEL)EBL5592588(OCoLC)1027063574(PPN)224637738(EXLCZ)99410000000204589620180130d2018 u| 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierAccelerator Programming Using Directives 4th International Workshop, WACCPD 2017, Held in Conjunction with the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2017, Denver, CO, USA, November 13, 2017, Proceedings /edited by Sunita Chandrasekaran, Guido Juckeland1st ed. 2018.Cham :Springer International Publishing :Imprint: Springer,2018.1 online resource (IX, 183 p. 59 illus.) Programming and Software Engineering,2945-9168 ;107329783319748955 3319748955 Intro -- Preface -- Organization -- Contents -- Applications -- An Example of Porting PETSc Applications to Heterogeneous Platforms with OpenACC -- Abstract -- 1 Introduction -- 2 Workflow and System Description -- 2.1 Workflow -- 2.2 System -- 3 Results and Discussion -- 3.1 Profiling with Score-P -- 3.2 The Most Expensive Kernel: MatMult_SeqAIJ -- 3.3 Four Steps Toward the Final Version of OpenACC Kernel -- 4 Speedups and Strong Scaling -- 5 Conclusion -- Acknowledgement -- References -- Hybrid Fortran: High Productivity GPU Porting Framework Applied to Japanese Weather Prediction Model -- 1 Introduction -- 1.1 ASUCA on GPU -- 1.2 Parallelization Granularity -- 1.3 Memory Layout -- 1.4 Related Work -- 1.5 Problem Summary -- 2 Hybrid Fortran Language Extension and Code Transformation -- 2.1 Parallel Loop Abstraction -- 2.2 Compile-Time Defined Memory Layout and Device Data Region -- 2.3 Transformed Code -- 3 Code Transformation Method -- 4 Productivity- and Performance Results -- 5 Conclusion and Future Work -- References -- Implicit Low-Order Unstructured Finite-Element Multiple Simulation Enhanced by Dense Computation Using OpenACC -- 1 Introduction -- 2 Finite-Element Earthquake Simulation Designed for the K Computer -- 3 Proposed Solver for GPUs Using OpenACC -- 3.1 Modification of Algorithm for GPUs -- 3.2 Introduction of OpenACC -- 4 Performance Measurements -- 5 Application Example -- 6 Concluding Remarks -- References -- Runtime Environments -- The Design and Implementation of OpenMP 4.5 and OpenACC Backends for the RAJA C++ Performance Portability Layer -- 1 Introduction -- 2 RAJA -- 2.1 Basic Execution Policies -- 2.2 RAJA::NestedPolicy and Loop Transformations -- 3 Embedding Directives in the C++ Type System -- 3.1 Defining Policy Tags for a Backend -- 3.2 Constructing Explicit Execution Policy Types.3.3 Implement forall Specializations -- 4 Case Study: OpenMP 4.5 -- 5 Case Study: OpenACC -- 6 Evaluation -- 6.1 Test Set -- 6.2 Goals and Non-Goals -- 6.3 Compilation Overhead -- 6.4 Runtime Overhead -- 7 Future Work and Conclusion -- References -- Enabling GPU Support for the COMPSs-Mobile Framework -- 1 Introduction -- 2 Related Work -- 3 Programming Model -- 3.1 Extension for GPU Support -- 4 Runtime Support Implementation -- 4.1 COMPSs-Mobile Runtime Architecture -- 4.2 OpenCL Platform -- 5 Performance Evaluation -- 5.1 OpenCL Platform Performance -- 5.2 Load Balancing Policies -- 6 Conclusions and Future Work -- References -- Concurrent Parallel Processing on Graphics and Multicore Processors with OpenACC and OpenMP -- Abstract -- 1 Introduction -- 2 MBFLO3 Application -- 2.1 Mathematical Formulation -- 2.2 Numerical Method -- 3 Heterogeneous Multiblock Computing Strategy -- 3.1 Multicore Host Parallelism -- 3.2 Manycore Accelerator Parallelism -- 3.3 Heterogeneous Host-Device Parallelism -- 4 Performance Results and Analysis -- 5 Conclusions -- Acknowledgements -- References -- Program Evaluation -- Exploration of Supervised Machine Learning Techniques for Runtime Selection of CPU vs. GPU Execution in Java Programs -- 1 Introduction -- 2 Motivation -- 3 Compiling Java to GPUs -- 3.1 Java Parallel Stream API -- 3.2 JIT Compilation for GPUs -- 4 Exploring Supervised Machine Learning Algorithms -- 4.1 Supervised Machine Learning -- 4.2 Generating Subsets of Features -- 4.3 Constructing Prediction Models -- 4.4 Integrating Prediction Models -- 5 Experimental Results -- 5.1 Experimental Protocol -- 5.2 Overall Summary -- 5.3 Accuracies on the Full Set of Features -- 5.4 Exploring ML Algorithms by Feature Subsetting -- 5.5 Lessons Learned -- 6 Related Work -- 6.1 GPU Code Generation from High-Level Languages -- 6.2 Offline Model Construction.7 Conclusions -- A Appendix -- References -- Automatic Testing of OpenACC Applications -- 1 Introduction -- 2 Testing a GPU Port of a Numerical Application -- 3 Autocompare with OpenACC -- 4 Autocompare Implementation -- 5 Experiments -- 6 Related Work -- 7 Future Work -- 8 Conclusion -- References -- Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices -- 1 Introduction -- 2 Related Work -- 3 Accelerator Programming Models -- 3.1 CUDA -- 3.2 OpenCL -- 3.3 OpenACC -- 3.4 OpenMP -- 4 Implementing the Conjugate Gradient Method -- 5 Performance Results on NVIDIA GPUs -- 5.1 Data Transfers with the Host -- 5.2 Single Device -- 5.3 Two Devices -- 6 Performance Results on Intel Xeon Phi Coprocessors -- 6.1 Single Device -- 6.2 Two Devices -- 7 Summary -- References -- Author Index.This book constitutes the refereed post-conference proceedings of the 4th International Workshop on Accelerator Programming Using Directives, WACCPD 2017, held in Denver, CO, USA, in November 2017. The 9 full papers presented have been carefully reviewed and selected from 14 submissions. The papers share knowledge and experiences to program emerging complex parallel computing systems. They are organized in the following three sections: applications; environments; and program evaluation.Programming and Software Engineering,2945-9168 ;10732Compilers (Computer programs)Logic designOperating systems (Computers)Computer programmingComputer engineeringComputer networksComputer scienceCompilers and InterpretersLogic DesignOperating SystemsProgramming TechniquesComputer Engineering and NetworksModels of ComputationCompilers (Computer programs).Logic design.Operating systems (Computers).Computer programming.Computer engineering.Computer networks.Computer science.Compilers and Interpreters.Logic Design.Operating Systems.Programming Techniques.Computer Engineering and Networks.Models of Computation.004.3Chandrasekaran Sunitaedthttp://id.loc.gov/vocabulary/relators/edtJuckeland Guidoedthttp://id.loc.gov/vocabulary/relators/edtMiAaPQMiAaPQMiAaPQBOOK9910349261003321Accelerator Programming Using Directives2853320UNINA