00903cam0-22003011i-450 99000444897040332120211202122457.0000444897FED01000444897(Aleph)000444897FED0100044489719990604d1880----km-y0itay50------baitaITy-------001yy<<La >>frammassoneria in questo ultimo decenniocontinuazione della frammassoneria figlia ed erede del ManicheismoLuigi ParascandoloNapoliA. della Croce1880532 p.22 cmMassoneria366.1Parascandolo,Luigi37077ITUNINARICAUNIMARCBK990004448970403321366.1 PAR 1R.Bibl. 13751FLFBCFLFBCFrammassoneria in questo ultimo decennio543020UNINA05820nam 2201609z- 450 991055767200332120210501(CKB)5400000000044785(oapen)https://directory.doabooks.org/handle/20.500.12854/69169(oapen)doab69169(EXLCZ)99540000000004478520202105d2020 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierMolecular Research in RiceAgronomically Important TraitsBasel, SwitzerlandMDPI - Multidisciplinary Digital Publishing Institute20201 online resource (378 p.)3-03943-238-9 3-03943-239-7 This volume presents recent research achievements concerning the molecular genetic basis of agronomic traits in rice. Rice (Oryza sativa L.) is the most important food crop in the world, being a staple food for more than half of the world's population. Recent improvements in living standards have increased the worldwide demand for high-yielding and high-quality rice cultivars. To achieve improved agricultural performance in rice, while overcoming the challenges presented by climate change, it is essential to understand the molecular basis of agronomically important traits. Recently developed techniques in molecular biology, especially in genomics and other related omics fields, can reveal the complex molecular mechanisms involved in the control of agronomic traits. As rice was the first crop genome to be sequenced, in 2004, molecular research tools for rice are well-established, and further molecular studies will enable the development of novel rice cultivars with superior agronomic performance.Molecular Research in Rice Biology, life sciencesbicsscResearch & information: generalbicsscTechnology, engineering, agriculturebicsscAAA-ATPaseABAantheranthesisbackground selectionbacterial blightbHLH transcription factorblast diseasebrassinosteroid signalingchilling stresschlorophyll biosynthesischloroplast biogenesischloroplast developmentchloroplast RNA splicing and ribosome maturation (CRM) domainchromosome segment substitution linesCIPKs genesco-expression networkcold stresscombined stressCRISPR/Cas9disease resistancedry seasondwarfismepidermal characteristicsepigeneticfatty acidforeground selectionFW2.2-like geneGABAgeneticgenetic variationgenome editinggerminabilityglobal methylationgrain protein contentgrain yieldhaplotypeheat stressheterosishigh night temperaturehigh-density linkage maphigh-throughput sequenceInsertion/Deletion (InDel) markersintron splicingjaponica riceKjeldahl nitrogen determinationlamina jointleaf angleleaf senescencelinkage mappinglong grainMagnaporthe oryzaemarker-assisted selectionmetabolomicsmicrobe-associated molecular pattern (MAMP)multi-gene allele contributionsn/anear infrared reflectance spectroscopynitrogen rateNMRoff-target effectOryza sativa (rice)Oryza sativa L.OsCYP96B4osmotic stressOsNAR2.1partial resistancephenolic metabolismphenotypepi21pyramidingPyricularia oryzae (formerly Magnaporthe oryzae)qRT-PCRQTLsquantitative trait lociquantitative trait locusreactive oxygen species (ROS)receptor-like cytoplasmic kinase (RLCK)residual heterozygotericerice (Oryza sativa L.)rice (Oryza sativa L.), grain size and weightrice (Oryza sativa)rice germplasmsalicylic acidsalinityseed dormancyseed germinationshoot apical meristemsingle nucleotide polymorphismspecific length amplified fragment sequencingtillertiller numbertranscriptometranscriptome analysistranscriptomic analysistransgenicwet seasonyield componentsBiology, life sciencesResearch & information: generalTechnology, engineering, agricultureHori Kiyosumiedt1295504Shenton MatthewedtHori KiyosumiothShenton MatthewothBOOK9910557672003321Molecular Research in Rice3023548UNINA