01142cam0-22003371i-450-99000435837040332120080604124932.0000435837FED01000435837(Aleph)000435837FED0100043583719990604d1994----km-y0itay50------baenghunNLy-------001yyOn the history of grammar among the arabsan essay in literary historyIgnaz Goldzihertranslated and edited by Kinga Dévényi, Tamás IvanyiAmsterdamBenjaminsc1994XX, 153 p.23 cmAmsterdam studies in the theory and history of linguistic scienceSeries 3.Studies in the history of the language sciences73Lingua arabaGrammatica492.75Goldziher,Ignaz153975Devenyi,KingaIvanyi,TamasITUNINARICAUNIMARCBK990004358370403321492.75 GOL 1Bibl.16290FLFBCFLFBCOn the history of grammar among the arabs539933UNINA00801nam0-2200253 --450 991072130080332120230601115542.0IT80619820230601d1977----kmuy0itay5050 baitaIT 001yy<<1.B.3.1-2: >>M. Tulli Ciceronis Orationes de civitatepro A. Licinio Archia poeta, pro L. Cornelio BalboMilanoCisalpino-La goliardica1977132 p.27 cm34023itaCicero,Marcus Tullius82411ITUNINAREICATUNIMARCBK9910721300803321FONDO PROFESSOR ANTONIO GUARINO IV Z 79 (1B.3.1-2)G/445FGBCFGBCM. Tulli Ciceronis orationes de civitate897042UNINA03357nam 2200625 450 991078884920332120180731044909.01-4704-0371-4(CKB)3360000000464957(EBL)3114572(SSID)ssj0000973843(PQKBManifestationID)11553854(PQKBTitleCode)TC0000973843(PQKBWorkID)10960028(PQKB)11412592(MiAaPQ)EBC3114572(RPAM)12992127(PPN)195416597(EXLCZ)99336000000046495720021105d2003 uy| 0engur|n|---|||||txtccrThe rational function analogue of a question of Schur and exceptionality of permutation representations /Robert M. Guralnick, Peter Müller, Jan SaxlProvidence, Rhode Island :American Mathematical Society,2003.1 online resource (96 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 773"Volume 162, number 773 (end of volume)."0-8218-3288-3 Includes bibliographical references.""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Arithmetic-Geometric Preparation""; ""2.1. Arithmetic and geometric monodromy groups""; ""2.2. Distinguished conjugacy classes of inertia generators""; ""2.3. Branch cycle descriptions""; ""2.4. The branch cycle argument""; ""2.5. Weak rigidity""; ""2.6. Topological interpretation""; ""2.7. Group theoretic translation of arithmetic exceptionality""; ""2.8. Remark about exceptional functions over finite fields""; ""Chapter 3. Group Theoretic Exceptionality""; ""3.1. Notation and definitions""; ""3.2. Primitive groups""""6.3. Existence results""""Chapter 7. Sporadic Cases of Arithmetic Exceptionality""; ""7.1. G = C[sub(2)] x C[sub(2)] (Theorem 4.13(a)(iii))""; ""7.2. G = (C[sup(2)][sub(11)]) x GL[sub(2)(3) (Theorem 4.13(c)(1))""; ""7.3. G = (C[sup(2)][sub(11)]) x S[sub(3)] (Theorem 4.13(c)(ii))""; ""7.4. G = (C[sup(2)][sub(5)]) x ((C[sub(4)] x C[sub(2)]) x C[sub(2)]) (Theorem 4.13(c)(iii))""; ""7.5. G = (C[sup(2)][sub(5)]) x D[sub(12)] (Theorem 4.13(c)(iv))""; ""7.6. G = (C[sup(2)][sub(3)]) x D[sub(8)] (Theorem 4.13(c)(v))""; ""7.7. G = (C[sup(4)][sub(2)]) x (C[sup(5)] x C[sub(2)]) (Theorem 4.13(c)(vi))""""7.8. G = PSL[sub(2)](8) (Theorem 4.10(a))""""7.9. G = PSL[sub(2)](9) (Theorem 4.10(b))""; ""7.10. A remark about one of the sporadic cases""; ""Bibliography""Memoirs of the American Mathematical Society ;no. 773.Algebraic fieldsArithmetic functionsPermutation groupsPolynomialsAlgebraic fields.Arithmetic functions.Permutation groups.Polynomials.512/.3Guralnick Robert M.1950-1565955Müller Peter1966-Saxl J(Jan),1948-MiAaPQMiAaPQMiAaPQBOOK9910788849203321The rational function analogue of a question of Schur and exceptionality of permutation representations3836107UNINA