01052nam0-22003491i-450-990003337000403321200010103-411-01354-0000333700FED01000333700(Aleph)000333700FED0100033370020001010d--------km-y0itay50------baitay-------001yy<<Das >>GROBE WORTERBUCH DER DEUTSCHEN SPRACHE VOLL.6GERMANYBIBL.INSTIT.MANNHEIM1976Dizionario Tedesco403/433ITUNINARICAUNIMARCBK990003337000403321403/433 DUD/10LINGUE 2108DECLI403/433 DUD/11LINGUE 2109DECLI403/433 DUD/12LINGUE 2110aDECLI403/433 DUD/13LINGUE 2110bDECLI403/433 DUD/14LINGUE 2493DECLI403/433 DUD/15LINGUE 2570DECLIDECLIGROBE WORTERBUCH DER DEUTSCHEN SPRACHE VOLL.6448333UNINAING0100849cam0 2200265 450 E60020003439320210126144143.020080212d1978 |||||ita|0103 baitaITPlusvalore FemminileGabriella ParcaMilanoMondadori1978240 p.19 cmL'immagine del presente001LAEC000223312001 *L'immagine del presenteParca, GabriellaA600200046626070198180ITUNISOB20210126RICAUNISOBUNISOB30027118E600200034393M 102 Monografia moderna SBNM300001015Si27118Acquistopregresso2UNISOBUNISOB20080212090831.020190708120221.0SpinosaPlusvalore femminile274453UNISOB02980nam 22006615 450 991014494490332120200705173507.03-540-45815-810.1007/b83277(CKB)1000000000233243(SSID)ssj0000324987(PQKBManifestationID)11912706(PQKBTitleCode)TC0000324987(PQKBWorkID)10319679(PQKB)11030769(DE-He213)978-3-540-45815-9(MiAaPQ)EBC6302718(MiAaPQ)EBC5591934(Au-PeEL)EBL5591934(OCoLC)1066200213(PPN)155210246(EXLCZ)99100000000023324320121227d2002 u| 0engurnn|008mamaatxtccrMonotone Random Systems Theory and Applications /by Igor Chueshov1st ed. 2002.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,2002.1 online resource (VIII, 240 p.) Lecture Notes in Mathematics,0075-8434 ;1779Bibliographic Level Mode of Issuance: Monograph3-540-43246-9 Includes bibliographical references and index.General Facts about Random Dynamical System -- Generation of Random Dynamical Systems -- Order-Preserving Random Dynamical Systems -- Sublinear Random Dynamical Systems -- Cooperative Random Differential Equations -- Cooperative Stochastic Differential Equations.The aim of this book is to present a recently developed approach suitable for investigating a variety of qualitative aspects of order-preserving random dynamical systems and to give the background for further development of the theory. The main objects considered are equilibria and attractors. The effectiveness of this approach is demonstrated by analysing the long-time behaviour of some classes of random and stochastic ordinary differential equations which arise in many applications.Lecture Notes in Mathematics,0075-8434 ;1779ProbabilitiesDynamicsErgodic theoryProbability Theory and Stochastic Processeshttps://scigraph.springernature.com/ontologies/product-market-codes/M27004Dynamical Systems and Ergodic Theoryhttps://scigraph.springernature.com/ontologies/product-market-codes/M1204XProbabilities.Dynamics.Ergodic theory.Probability Theory and Stochastic Processes.Dynamical Systems and Ergodic Theory.519.24Chueshov Igorauthttp://id.loc.gov/vocabulary/relators/aut66734MiAaPQMiAaPQMiAaPQBOOK9910144944903321Monotone random systems1424838UNINA