01034nam0-22003011i-450-990003008100403321000300810FED01000300810(Aleph)000300810FED0100030081020000920d1963----km-y0itay50------baitaITAmenagement a fins multiples des bassins fluviaux.Première PartieManuel de mise en valeur des bassins fluviaux.ParisInstitut pour le developpement économiqueBanque internationale pour la reconstruction et le developpement1963.ix, 96 p.21 cm200000250000ueil de la defense contre les inondations7Risorse naturaliGestioneF/3.2H/0.1Nazioni UniteITUNINARICAUNIMARCBK990003008100403321H/0.1 AME039978/7SESAmenagement a fins multiples des bassins fluviaux.Première Partie468245UNINAING0101879nam 22004932 450 991079174050332120230814181123.00-88385-930-0(CKB)2560000000081729(SSID)ssj0000577707(PQKBManifestationID)11378679(PQKBTitleCode)TC0000577707(PQKBWorkID)10578415(PQKB)10583499(UkCbUP)CR9780883859308(MiAaPQ)EBC3330410(Au-PeEL)EBL3330410(CaPaEBR)ebr10729381(OCoLC)929120318(RPAM)3586737(EXLCZ)99256000000008172920111024d1965|||| uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierMathematics of choice, or, How to count without counting /Ivan NivenWashington :Mathematical Association of America,1965.1 online resource (xi, 202 pages) illustrations; digital, PDF file(s)Anneli Lax New Mathematical Library ;150-88385-615-8 Bibliography: p. [199]Counting lies at the heart of much mathematics, and Niven's subtitle is How to count without counting. This is the whole art of combinatorics: permutations, combinations, binomial coefficients, the inclusion-exclusion principle, combinatorial probability, partitions of numbers, generating polynomials, the pigeonhole principle, and much more.Combinatorial analysisCombinatorial analysis.511.6Niven Ivan1915-1999,12251UkCbUPUkCbUPBOOK9910791740503321Mathematics of choice or how to count without counting435774UNINA