01321cam0-22004811i-450-99000286506040332120060403124412.00-7450-1036-9000286506FED01000286506(Aleph)000286506FED0100028650620030910d1994----km-y0itay50------baengAnalytical methods in economicsAkira TakayamaNew York [etc]Harvester Wheatsheaf1994xix, 672 p.23 cmEconomiaMetodi matematici per l'economiaEconomiaMatematicaEconomiaMetodi analiticiEconomiaModelli matematiciEconomiaTeoria metodologica330.01330.015 1B/1.1Takayama,Akira60564ITUNINARICAUNIMARCBK990002865060403321MXX-A-1394222MAS62 330.105 TAKDEPA 6994DAGEAB/1.1 TAK14428SESB/1.1 TAK14540SES122-L-1615594MA1MASMA1DAGEASES90AXX90CXXAnalytical methods in economics45422UNINA01271nam0 22003373i 450 BVE019541020231121125416.08877300337IT2001-9135 20010614d2000 ||||0itac50 baitaitz01i xxxe z01nElementi di gruppoanalisiil gruppo piccolo ed intermedioRocco A. PisaniRomaEUR\2000!160 p.ill.22 cm.Collana di psicoterapie13001LO100944542001 Collana di psicoterapie13Psicoterapia di gruppoFIRRMLC000419IPisani, Rocco AntonioUBOV1340070701440325Pisani, Rocco A.CFIV346030Pisani, Rocco AntonioITIT-0120010614IT-RM028 IT-FR0017 Biblioteca Universitaria AlessandrinaRM028 Biblioteca umanistica Giorgio ApreaFR0017 BVE0195410Biblioteca umanistica Giorgio Aprea 52MAG 14/1065 52DSS0000021055 VMB RS A 2012031620120316 01 52Elementi di gruppoanalisi3603749UNICAS07921nam 2200541 450 991083118280332120230114061410.09783527829712electronic book3-527-82971-73-527-82969-59783527829705ePub ebook3-527-82970-9(MiAaPQ)EBC7078221(Au-PeEL)EBL7078221(CKB)24750553100041(EXLCZ)992475055310004120230114d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierMaterial characterization using electron holography /Daisuke Shindo, Takeshi TomitaWeinheim, Germany :Wiley-VCH,[2023]©20231 online resource (242 pages) illustrationsPrint version: Tomita, Takeshi Material Characterization Using Electron Holography Newark : John Wiley & Sons, Incorporated,c2022 9783527348046 Includes bibliographical references and index.Cover -- Title Page -- Copyright -- Contents -- Preface -- List of Specimens -- Part I Introduction -- Chapter 1 Importance of Electromagnetic Field and Its Visualization -- Chapter 2 Maxwell's Equations and Special Relativity -- 2.1 Maxwell's Equations and Electromagnetic Potentials -- 2.2 Maxwell's Equations Formulated Using Special Relativity -- References -- Chapter 3 Basis of Transmission Electron Microscopy -- Part II Principles and Practice -- Chapter 4 Principles of Electron Holography -- 4.1 Types of Electron Holography -- 4.2 Outline of Electron Holography -- 4.3 Comparison of Phase Shifts Due to Scalar and Vector Potentials -- 4.3.1 Phase Shift Due to Scalar Potential -- 4.3.2 Phase Shift Due to Vector Potential -- 4.3.3 Effect of Thickness Change on Phase Shifts Due to Scalar and Vector Potentials -- 4.3.4 Electric Information -- 4.4 Analysis of Reconstructed Phase Images by Computer Simulation -- References -- Chapter 5 Microscope Constitution and Hologram Formation -- 5.1 Basic Constitution of Transmission Electron Microscope -- 5.1.1 Electron Gun System -- 5.1.2 Illumination System -- 5.1.3 Imaging System -- 5.1.3.1 Focal Length -- 5.1.3.2 Spherical Aberration Coefficient -- 5.1.3.3 Chromatic Aberration Coefficient -- 5.1.3.4 Minimum Step of Defocus -- 5.1.4 Observation System -- 5.1.4.1 Television Camera -- 5.1.4.2 Slow‐Scan Charge‐Coupled Device Camera -- 5.1.5 Operation of Transmission Electron Microscope -- 5.1.5.1 Adjustment of Electron Gun -- 5.1.5.2 Alignment and Astigmatism Correction of Condenser Lenses -- 5.1.5.3 Alignment of Voltage Center and Correction of Objective Lens Astigmatism -- 5.1.5.4 Correction of Intermediate Lens Astigmatism -- 5.1.5.5 Alignment of Projector Lens -- 5.1.5.6 Adjustment of Objective Lens Focus -- 5.2 Biprism System -- 5.3 Coherence Lengths -- 5.4 Formation of Interference Fringes.5.4.1 Geometrical‐Path Interpretation with Two Virtual Sources -- 5.4.2 Wave‐Optical Treatment -- 5.4.2.1 Wave Function at Wire Plane -- 5.4.2.2 Green's Integral Theorem -- 5.4.2.3 Explicit Form of Green's Function -- 5.4.2.4 Intensity Distribution of Interference Fringes -- 5.4.2.5 Stationary Points and Interference Region -- 5.4.2.6 Spacing of Interference Fringes -- 5.5 Simulation of Interference Fringes -- References -- Chapter 6 Related Techniques and Specialized Instrumentation -- 6.1 Split‐Illumination Electron Holography -- 6.2 Dark‐Field Electron Holographic Interferometry -- 6.3 Lorentz Microscopy -- 6.3.1 Fresnel Mode (Defocusing Mode) -- 6.3.2 Foucault Mode (In‐Focus Mode) -- 6.3.3 Lorentz Microscopy Using Scanning Transmission Electron Microscope -- 6.3.4 Phase Reconstruction Using Transport‐of‐Intensity Equation -- 6.4 Magnetically Shielded Lens and High‐Voltage Electron Microscope -- 6.5 Aberration‐Corrected Lens System -- 6.6 Multifunctional Specimen Holders with Piezodriving Probes -- 6.7 Specimen Preparation Techniques -- 6.8 High‐Resolution and Analytical Electron Microscopy -- 6.8.1 Conventional Microscopy and High‐Resolution Electron Microscopy -- 6.8.2 High‐Angle Annular Dark‐Field Method -- 6.8.3 Analytical Electron Microscopy -- References -- Part III Application -- Chapter 7 Electric Field Analysis -- 7.1 Measurement of Inner Potential -- 7.1.1 Diamond‐Like Carbon -- 7.1.2 SiO2 Particles -- 7.1.3 p-n Junctions and Low‐Dimensional Materials -- 7.2 Electric Field Analysis of Precipitates in Multilayer Ceramic Capacitor -- 7.3 Analysis of Spontaneous Polarization in Oxide Heterojunctions -- 7.4 Evaluation of Electric Charge with Laser Irradiation -- 7.5 Analysis of Conductivity with Microstructure Changes -- 7.6 Detection of Electric Field Variation Around Field Emitter -- References -- Chapter 8 Magnetic Field Analysis.8.1 Quantitative Analysis of Magnetic Flux Distribution of Nanoparticles -- 8.2 Observation of Magnetization Processes -- 8.2.1 Soft Magnetic Materials -- 8.2.2 Hard Magnetic Materials -- 8.2.3 Magnetic Recording Materials -- 8.2.4 Ferromagnetic Shape‐Memory Materials -- 8.3 Observation of Magnetic Structure Change with Temperature -- 8.4 Analysis of Three‐Dimensional Magnetic Structures -- References -- Part IV Visualization of Collective Motions of Electrons and Their Interpretation -- Chapter 9 Charging Effects and Secondary Electron Distribution of Biological Specimens -- 9.1 Visualization of Stationary Electron Orbits -- 9.1.1 Stationary Electron Orbits Observed Around Microfibrils -- 9.1.2 Simulation of Electron Orbits Around Microfibril -- 9.1.3 Interpretation of Reconstructed Amplitude Image -- 9.1.4 Simulation of Visibility of Interference Fringes for Electron Motion -- 9.1.5 Change in Electron Orbits Due to Insertion of Electrode -- 9.2 Visualization of Accumulative and Collective Motions of Electrons -- References -- Chapter 10 Collective Motions of Electrons Around Various Charged Insulators -- 10.1 Accumulation of Electrons on Cleaved Surfaces of BaTiO3 -- 10.2 Dependency of Electron Distribution on Surface Condition of Epoxy Resin and Kidney -- 10.3 Electron Distribution Between Epoxy Resin and Kidney -- 10.4 Control of Electron Distribution Around Cellulose Nanofibers by Applying External Electric Field -- References -- Chapter 11 Extension of Analysis of Collective Motions of Electrons -- 11.1 Electron Spin Polarization -- 11.2 Accumulation of Electrons on Bulk Insulator Surface -- References -- Chapter 12 Theoretical Consideration on Visualizing Collective Motions of Electrons -- 12.1 De Broglie's Matter Wave and Wave Function -- 12.2 Disturbance‐Free Observation -- 12.3 Electron Interference and General Relativity.12.3.1 Einstein's Field Equations Based on General Relativity -- 12.3.2 Infeld and Schild's Approximate Solution to Einstein's Field Equations -- 12.4 Spinning Linear Wave Model -- 12.5 Electron Interference Formulated with Spinning Linear Wave -- 12.5.1 Interpretation of Diffraction Intensity -- 12.5.2 Interpretation of Interference Fringes -- 12.5.3 Simulation of Interference Fringes -- 12.6 Interpretation of Wave-Particle Dualism -- References -- A Physical Constants, Conversion Factors, and Electron Wavelength -- Index -- EULA.Electron holographyMaterialsElectric propertiesTransmission electron microscopyElectron holography.MaterialsElectric properties.Transmission electron microscopy.502.825Shindō D(Daisuke),1953-1675138Tomita TakeshiMiAaPQMiAaPQMiAaPQBOOK9910831182803321Material characterization using electron holography4040405UNINA02096nam 2200457z- 450 991055723460332120211118(CKB)5400000000041597(oapen)https://directory.doabooks.org/handle/20.500.12854/73009(oapen)doab73009(EXLCZ)99540000000004159720202111d2019 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierCoordination and Cooperation in Complex Adaptive Systems: Theory and ApplicationFrontiers Media SA20191 online resource (155 p.)2-88945-844-X This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contactCoordination and Cooperation in Complex Adaptive SystemsPhysicsbicsscScience: general issuesbicssccooperationevolutionary dynamicsevolutionary game theorySocial learningPhysicsScience: general issuesChen Xiaojieedt1278121Sasaki TatsuyaedtOkada IsamuedtChen XiaojieothSasaki TatsuyaothOkada IsamuothBOOK9910557234603321Coordination and Cooperation in Complex Adaptive Systems: Theory and Application3012601UNINA