03129nam 22005895 450 99646661900331620211202193453.03-540-45781-X10.1007/b84212(CKB)1000000000233286(SSID)ssj0000323844(PQKBManifestationID)11240565(PQKBTitleCode)TC0000323844(PQKBWorkID)10300897(PQKB)11607940(DE-He213)978-3-540-45781-7(MiAaPQ)EBC6285731(MiAaPQ)EBC5592388(Au-PeEL)EBL5592388(OCoLC)1066200133(PPN)155176439(EXLCZ)99100000000023328620121227d2002 u| 0engurnn#008mamaatxtrdacontentcrdamediacrrdacarrierHp-finite element methods for singular perturbations /Jens M. MelenkBerlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,2002.1 online resource (xiv, 326 pages)Lecture Notes in Mathematics,0075-8434 ;17963-540-44201-4 Includes bibliographical references (pages [311]-316) and index.1.Introduction -- Part I: Finite Element Approximation -- 2. hp-FEM for Reaction Diffusion Problems: Principal Results -- 3. hp Approximation -- Part II: Regularity in Countably Normed Spaces -- 4. The Countably Normed Spaces blb,e -- 5. Regularity Theory in Countably Normed Spaces -- Part III: Regularity in Terms of Asymptotic Expansions -- 6. Exponentially Weighted Countably Normed Spaces -- Appendix -- References -- Index.Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.Lecture notes in mathematics (Springer-Verlag) ;1796Differential equations, PartialNumerical solutionsSingular perturbations (Mathematics)Differential equations, PartialNumerical solutions.Singular perturbations (Mathematics)515.35365N30msc35B25mscMelenk Jens M.1967-67476MiAaPQMiAaPQMiAaPQBOOK996466619003316Hp-finite element methods for singular perturbations262255UNISA00744nam0-22002771i-450 99000279664040332120230605144235.0000279664FED01000279664(Aleph)000279664FED0100027966420000920d1961----km-y0itay50------baengPrinciples of accountingby R. Wixon and R. G. CoxNew YorkRonald Press1961Wixon,Rufus113442Cox,Robert G.ITUNINARICAUNIMARCBK9900027966404033211-12-8--BISS.I.ECA1-12-8s.i.ECAECAPrinciples of Accounting420792UNINAING0102306nam 2200601 a 450 991097176500332120240514061256.01-283-35978-2978661335978090-272-8105-X(CKB)2550000000073879(EBL)805767(OCoLC)769342180(SSID)ssj0000550947(PQKBManifestationID)11341241(PQKBTitleCode)TC0000550947(PQKBWorkID)10524277(PQKB)10601643(MiAaPQ)EBC805767(Au-PeEL)EBL805767(CaPaEBR)ebr10517160(CaONFJC)MIL1113312(DE-B1597)719037(DE-B1597)9789027281050(EXLCZ)99255000000007387919810211d1980 uy 0engur|n|---|||||txtrdacontentcrdamediacrrdacarrierAspects of Góngora's "Soledades" /John R. Beverley1st ed.Amsterdam :Benjamins,1980.1 online resource (153 pages)Purdue University monographs in Romance languages ;v. 1Excerpts in Spanish.90-272-1711-4 Includes bibliographical references.pt. 1. Towards a poetics of the Soledades -- pt. 2. Two modes of contradiction in the Soledates -- pt. 3. The architecture of time.This study of Góngora's Soledades is intended to summarize and discuss some of the problems which seemed important for a better understanding of these poems. Special attention is paid to the two opposing 'camps' that developed over time; one mainly focussing on the form and the other on the content of Soledades. In this volume the authors tries to integrate the methods and results of both of the 'camps'.Purdue University monographs in Romance languages ;1.LITERARY CRITICISM / GeneralbisacshLITERARY CRITICISM / General.861/.3Beverley John387379MiAaPQMiAaPQMiAaPQBOOK9910971765003321Aspects of Gongora's "Soledades"563733UNINA