00861nam0-22003011i-450-99000558089040332120110930133210.0000558089FED01000558089(Aleph)000558089FED0100055808919990604d1977----km-y0itay50------baitay-------001yyDonna, arte, marxismocon un'autoanalisi sullo sviluppo della creativitàElsa EmmyRomaBulzonic1977190 p.21 cmBiblioteca di cultura116DonnaConcezione marxista305.42Emmy,Elsa215239ITUNINARICAUNIMARCBK990005580890403321305.42 EMM 1ST. ARTE 13401FLFBCFLFBCDonna, arte, marxismo133001UNINA01063nam0-22003491i-450 99000083051040332120200302111121.03-540-05435-9000083051FED01000083051(Aleph)000083051FED0100008305120001010d1971----km-y0itay50------baengDEy-------001yyAsymptotic behavior and stability problems in ordinary differential EquationsL. Cesari3. ed.BerlinSpringer-Verlag1971IX, 271 p.37 fig.24 cmErgebnisse der Mathematik und ihrer Grenzgebiete16Equazioni differenziali ordinarie515.352Cesari,Lamberto40585ITUNINARICAUNIMARCBK99000083051040332102 29 E 211309FINBNFINBNAsymptotic Behavior and Stability Problems in Ordinary Differential Equations345836UNINAING0102963nam 2200469 450 991048364390332120220128151838.01-4471-7505-010.1007/978-1-4471-7505-6(CKB)4100000011951228(DE-He213)978-1-4471-7505-6(MiAaPQ)EBC6635583(Au-PeEL)EBL6635583(OCoLC)1257297219(PPN)260306614(EXLCZ)99410000001195122820220128d2021 uy 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierVector analysis for computer graphics /John VinceSecond edition.London, England :Springer,[2021]©20211 online resource (XIII, 246 p. 141 illus. in color.) 1-4471-7504-2 Includes bibliographical references and index.Preface -- History of Vector Analysis -- Linear Equations -- Vector Algebra -- Products of Vectors -- Differentiating Vector-Valued Functions -- Vector Differential Operators -- Tangent and Normal Vectors -- Straight Lines -- The Plane -- Intersections -- Rotating Vectors -- Index.This second edition has been completely restructured, resulting in a compelling description of vector analysis from its first appearance as a byproduct of Hamilton’s quaternions to the use of vectors in solving geometric problems. The result provides readers from different backgrounds with a complete introduction to vector analysis. The author shows why vectors are so useful and how it is possible to develop analytical skills in manipulating vector algebra. Using over 150 full-colour illustrations, the author demonstrates in worked examples how this relatively young branch of mathematics has become a powerful and central tool in describing and solving a wide range of geometric problems. These may be in the form of lines, surfaces and volumes, which may touch, collide, intersect, or create shadows upon complex surfaces. The book is divided into eleven chapters covering the history of vector analysis, linear equations, vector algebra, vector products, differentiating vector-valued functions, vector differential operators, tangent and normal vectors, straight lines, planes, intersections and rotating vectors. The new chapters are about the history, differentiating vector-valued functions, differential operators and tangent and normal vectors. The original chapters have been reworked and illustrated.Computer graphicsMathematicsComputer graphicsMathematics.006.60151Vince John(John A.),471760MiAaPQMiAaPQMiAaPQBOOK9910483643903321Vector analysis for computer graphics2586339UNINA