00789nam0-22002891i-450-99000048047040332120080423103023.03-528-08309-3000048047FED01000048047(Aleph)000048047FED0100004804720020821d1973----km-y0itay50------bagerrusa-------001yyHöhere mathematik griffbereitdefinitionen theoreme beispieleM. Ja. WygodskiBraunschweigFried. Vieweg1973782 p.ill.19 cmMatematica510Wygodski,M. JA.ITUNINARICAUNIMARCBK99000048047040332110 B II 1608231DINELDINELUNINA04321nam 22007575 450 991025425290332120200701140724.09783319336060331933606110.1007/978-3-319-33606-0(CKB)3710000000651931(SSID)ssj0001665855(PQKBManifestationID)16455302(PQKBTitleCode)TC0001665855(PQKBWorkID)14999718(PQKB)10272484(DE-He213)978-3-319-33606-0(MiAaPQ)EBC6302056(MiAaPQ)EBC5579172(Au-PeEL)EBL5579172(OCoLC)1066188407(PPN)193444291(EXLCZ)99371000000065193120160427d2016 u| 0engurnn|008mamaatxtccrIntelligent Numerical Methods II: Applications to Multivariate Fractional Calculus /by George A. Anastassiou, Ioannis K. Argyros1st ed. 2016.Cham :Springer International Publishing :Imprint: Springer,2016.1 online resource (XII, 116 p.) Studies in Computational Intelligence,1860-949X ;649Bibliographic Level Mode of Issuance: Monograph9783319336053 3319336053 Fixed Point Results and Applications in Left Multivariate Fractional Calculus -- Fixed Point Results and Applications in Right Multivariate Fractional Calculus -- Semi-local Iterative Procedures and Applications In K-Multivariate Fractional Calculus -- Newton-like Procedures and Applications in Multivariate Fractional Calculus -- Implicit Iterative Algorithms and Applications in Multivariate Calculus -- Monotone Iterative Schemes and Applications in Fractional Calculus -- Extending the Convergence Domain of Newton’s Method -- The Left Multidimensional Riemann-Liouville Fractional Integral -- The Right Multidimensional Riemann-Liouville Fractional Integral.In this short monograph Newton-like and other similar numerical methods with applications to solving multivariate equations are developed, which involve Caputo type fractional mixed partial derivatives and multivariate fractional Riemann-Liouville integral operators. These are studied for the first time in the literature. The chapters are self-contained and can be read independently. An extensive list of references is given per chapter. The book’s results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this short monograph is suitable for researchers, graduate students, to be used in graduate classes and seminars of the above subjects, also to be in all science and engineering libraries.Studies in Computational Intelligence,1860-949X ;649Computational intelligenceArtificial intelligenceComputer scienceMathematicsComputational complexityComputational Intelligencehttps://scigraph.springernature.com/ontologies/product-market-codes/T11014Artificial Intelligencehttps://scigraph.springernature.com/ontologies/product-market-codes/I21000Computational Science and Engineeringhttps://scigraph.springernature.com/ontologies/product-market-codes/M14026Complexityhttps://scigraph.springernature.com/ontologies/product-market-codes/T11022Computational intelligence.Artificial intelligence.Computer scienceMathematics.Computational complexity.Computational Intelligence.Artificial Intelligence.Computational Science and Engineering.Complexity.519.535Anastassiou George Aauthttp://id.loc.gov/vocabulary/relators/aut60024Argyros Ioannis Kauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK9910254252903321Intelligent Numerical Methods II: Applications to Multivariate Fractional Calculus2494563UNINA