00803nam0-22002891i-450-99000031031040332120001010000031031FED01000031031(Aleph)000031031FED0100003103120001010d--------km-y0itay50------baitay-------001yy<<Das >>wassergas und seine verwendung in der technik.Von M. GeitelBerlinVerlag von Siemens1899116 p., ill., 25 cm660Geitel,M.336304ITUNINARICAUNIMARCBK99000031031040332104 107-51CI 01269DINCHDINCHWassergas und seine verwendung in der technik129079UNINAING0110676nam 2200505 450 991050637830332120220713140640.03-030-70672-9(CKB)4950000000280088(MiAaPQ)EBC6787648(Au-PeEL)EBL6787648(OCoLC)1280107762(PPN)258301031(EXLCZ)99495000000028008820220713d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierThermal spray fundamentals from powder to part /Maher I. Boulos, Pierre L. Fauchais, Joachim V. R. Heberlein2nd ed.Cham, Switzerland :Springer,[2021]©20211 online resource (1147 pages)3-030-70671-0 Intro -- Foreword -- Preface -- Preface (First Edition) -- Contents -- Part I: Basic Concepts -- Chapter 1: Introduction to Thermal Spray -- 1.1 Introduction -- 1.2 Needs for Coatings -- 1.3 Thermal Spraying -- 1.4 Classification of Thermal Spray Processes -- 1.5 Historical Evolution of Thermal Spray Technology -- 1.6 Thermal Spray Applications -- 1.7 Overview of Book Content -- References -- Chapter 2: Overview of Surface Modification Technologies -- 2.1 Introduction -- 2.2 Coating Deposited at the Atomic Level -- 2.2.1 Plating -- 2.2.1.1 Electroless Plating -- 2.2.1.2 Electroplating -- 2.2.2 Physical Vapor Deposition -- 2.2.2.1 Evaporation by Resistive Heating -- 2.2.2.2 Electron and Ion Beam Vacuum Evaporator/Coating Systems -- 2.2.2.3 Sputtering -- 2.2.2.4 Pulsed Laser Deposition -- 2.2.3 Chemical Vapor Deposition -- 2.2.3.1 Low-Pressure Chemical Vapor Deposition -- 2.2.3.2 Plasma-Enhanced Chemical Vapor Deposition -- 2.2.3.3 Laser-Enhanced Chemical Vapor Deposition -- 2.2.4 Thin Film Coating Technologies in Industry -- 2.3 Thermal-Sprayed Coatings -- 2.3.1 Basic Concepts -- 2.3.1.1 Combustion-Based Processes -- 2.3.1.2 Plasma-Based Processes -- 2.3.2 Energetic Gas Flow Generation -- 2.3.2.1 Cold Spray -- 2.3.2.2 Flame Spray -- 2.3.2.3 Plasma Spraying -- 2.3.2.4 Plasma-Transferred Arc Deposition -- 2.3.3 Material Preparation and Injection -- 2.3.3.1 Powder Injection -- 2.3.3.2 Wire, Rod, or Cord Injection -- 2.3.3.3 Liquid Injection -- 2.3.4 Substrate Preparation -- 2.3.5 Coating Formation -- 2.3.6 Residual Stresses -- 2.3.7 Brief Descriptions of Thermal Spray Applications -- 2.4 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Greek Alphabet -- References -- Chapter 3: Fundamentals of Combustion and Thermal Plasmas -- 3.1 Introduction -- 3.2 Combustion -- 3.2.1 Description of Combustion Processes.3.2.2 Combustion at Equilibrium -- 3.2.3 Combustion Kinetics -- 3.2.3.1 One-Step Reactions -- 3.2.3.2 Simultaneous Interdependent and Chain Reactions -- 3.2.3.3 Criterion for Explosion -- 3.2.4 Combustion (Deflagrations) or Detonations -- 3.2.4.1 Combustion (Deflagration) -- 3.2.4.2 Detonation -- 3.3 Thermal Plasmas for Spraying -- 3.3.1 Comparison of Thermal Plasma and Combustion Spraying -- 3.3.2 Definition -- 3.3.3 Plasma Composition -- 3.3.4 Thermodynamic Properties -- 3.3.5 Transport Properties -- 3.3.5.1 Electrical Conductivity -- 3.3.5.2 Molecular Viscosity -- 3.3.5.3 Thermal Conductivity -- 3.4 Basic Concepts in Modeling of Plasma Spraying Processes -- 3.4.1 Introduction -- 3.4.2 Conservation Equations for the Modeling of Plasma Flows -- 3.4.2.1 Continuity Equations -- 3.4.2.2 Momentum Equations -- 3.4.2.3 Energy Equations -- 3.4.2.4 Electromagnetic Field Equations -- 3.4.2.5 Laminar or Turbulent Flows -- 3.4.3 Gas Composition, Thermodynamic, and Transport Properties -- 3.4.3.1 Gas Composition -- 3.4.3.2 Thermodynamic Properties -- 3.4.3.3 Transport Properties -- 3.4.4 Examples of DC Torch Modeling Results -- 3.5 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Mathematical Symbols -- Greek Alphabet -- References -- Chapter 4: Plasma-Particle Momentum and Heat Transfer -- 4.1 Introduction -- 4.2 Overview of Powder Characteristics -- 4.2.1 Individual Particle Size and Morphology -- 4.2.2 Particle Size-Distribution -- 4.3 Plasma-Particle Momentum Transfer -- 4.3.1 Flow around Single Sphere and Drag Coefficient -- 4.3.2 Corrections to the Drag Coefficient -- 4.3.2.1 Effect of the Temperature Gradients -- 4.3.2.2 Effect of Particle Shape -- 4.3.2.3 Non-continuum Effect -- 4.3.2.4 Effect of Particle Charging -- 4.4 Plasma-Particle Heat Transfer -- 4.4.1 Heat Transfer Coefficient -- 4.4.2 Corrections to the Heat Transfer Coefficient.4.4.2.1 Effect of the Temperature Gradients -- 4.4.2.2 Non-continuum Effect -- 4.4.3 Radiation Energy Losses from the Surface of the Particle -- 4.5 Transient Heating and Melting of a Particle -- 4.5.1 Spherical Particle with Infinite Thermal Conductivity -- 4.5.2 Effect of Internal Heat Conduction -- 4.5.3 The Moving Boundary Problem -- 4.5.4 Transient Heating and Melting of Porous Spherical Particle -- 4.6 Particle Vaporization Under Plasma Conditions -- 4.6.1 Basic Mechanism of Particle Vaporization -- 4.6.2 Effect of Vaporization on Heat Transfer -- 4.6.3 Effect of Radiation on Particle Vaporization -- 4.6.4 Effect of Mass Transfer and Chemical Reactions -- 4.7 Chemical Reactions and Melt Circulation -- 4.7.1 Diffusion Controlled Reaction -- 4.7.2 Reactions Taking Place Between Condensed Phases -- 4.7.3 Reactions Controlled by Convection Within Liquid Phase -- 4.7.4 Nano- and Micrometer-Sized Particles and Coating Structures -- 4.8 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Greek Alphabet -- References -- Chapter 5: Gas and Particle Dynamics in Thermal Spray -- 5.1 Introduction -- 5.2 Particle Injection in Plasma Spray -- 5.2.1 Design Considerations of Particle Injection Systems -- 5.2.2 Effect of Carrier Gas -- 5.3 Suspension or Solution Injection into Plasma Flows -- 5.3.1 Gas Atomization -- 5.3.2 Mechanical Atomization -- 5.3.2.1 Liquid Penetration into the Plasma Flow -- 5.3.2.2 Liquid Fragmentation -- 5.3.2.3 Droplets Fragmentation and Vaporization -- 5.3.2.4 Influence of Arc Root Fluctuations -- 5.3.3 Cooling of Plasma Flow by the Liquid -- 5.4 Particles and Droplets in Combustion and Thermal Plasmas -- 5.4.1 Flow and Temperature Fields in DC Plasma Jets -- 5.4.2 Particle Trajectories in DC Plasma Spraying -- 5.4.3 Flow and Temperature Fields in RF Induction Plasmas.5.4.4 Particle Velocity Distributions in RF Plasma Spraying -- 5.5 Particle Trajectory and Temperature History -- 5.5.1 Model Formulation -- 5.5.2 Single Particles Motion in Combustion or Plasma Stream -- 5.5.2.1 Equations of Motion -- 5.5.2.2 In-Flight Particle Heating, Melting, and Evaporation -- 5.5.3 Particle Trajectory in Combustion and DC Plasmas -- 5.5.3.1 Influence of the Injection Conditions -- 5.5.3.2 Optimization of the Injection -- 5.5.3.3 Influence of Plasma Jet Fluctuations -- 5.5.4 Trajectory Corrections Due to Various Effects -- 5.5.4.1 Effect of Temperature Gradient -- 5.5.4.2 Effect of Rarefaction and Vaporization -- 5.5.4.3 Effect of Turbulence -- 5.5.4.4 Thermophoresis Effect -- 5.5.4.5 Other Effects -- 5.5.5 Particle Trajectory in Induction Plasmas -- 5.6 Plasma-Particle Interactions Under Dense Loading Conditions -- 5.7 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Greek Alphabet -- References -- Part II: Thermal Spray Technologies -- Chapter 6: Cold Spray -- 6.1 Introduction -- 6.2 Overview of Cold Spray Technologies -- 6.2.1 Conventional Cold Spray -- 6.2.2 Kinetic Spray -- 6.2.3 Pulsed-Gas Dynamic Spray -- 6.2.4 Low Pressure Cold Spray -- 6.2.5 Vacuum Cold Spray -- 6.2.6 Laser-Assisted Cold-Spray -- 6.3 Gas Dynamics in Cold Spray Process -- 6.3.1 Isentropic Expansion of the Flow -- 6.3.2 Compressible Flow Models -- 6.3.3 Nozzle Design -- 6.4 Coating Formation -- 6.4.1 Induction Time -- 6.4.2 Particle and Substrate Deformation -- 6.4.3 Critical Impact Velocity -- 6.4.4 Material and Substrate Compatibility -- 6.4.5 Particle Shock Consolidation -- 6.4.6 Coating Buildup -- 6.4.7 Deposition Efficiency -- 6.5 Deposition Parameters -- 6.5.1 Spray Gases -- 6.5.2 Spray Powders -- 6.5.2.1 General Remarks -- 6.5.2.2 Influence of Particle Diameter, Density, and Specific Heat -- 6.5.2.3 Particle Temperature.6.5.2.4 Composite Materials -- 6.5.2.5 Metal-Ceramic Blends -- 6.5.2.6 Metal-Cladded Composite Particles -- 6.5.2.7 Nano Composites -- 6.5.3 Substrate -- 6.5.3.1 Substrate Roughness -- 6.5.3.2 Spray Distance -- 6.5.3.3 Spray Angle -- 6.5.3.4 Substrate Oxidation -- 6.5.3.5 Laser Preheating of the Substrate -- 6.5.4 Nozzle Design and Powder Injection -- 6.5.4.1 Carrier Gas -- 6.5.4.2 Critical Velocity -- 6.5.4.3 Particle Loading Effect -- 6.6 Coating Materials and Process Applications -- 6.6.1 General Remarks -- 6.6.2 Metals -- 6.6.2.1 Aluminum -- 6.6.2.2 Copper -- 6.6.2.3 Nickel -- 6.6.2.4 Selective Galvanizing -- 6.6.2.5 Superalloys -- 6.6.2.6 Titanium and TiO2 and TiN -- 6.6.2.7 Iron and Steel -- 6.6.2.8 Tantalum -- 6.6.2.9 Pure Silicon -- 6.6.2.10 Pure Silver -- 6.6.2.11 Metallic Coatings on Polymers -- 6.6.2.12 Complex Alloys -- 6.6.2.13 Submicronic Ceramic Powders -- 6.6.3 Composites -- 6.6.3.1 Pure Iron (99.5%) or Stainless Steel (304 L) Reinforced by Diamond -- 6.6.3.2 Aluminum and Copper -- 6.6.3.3 Aluminum and Silicon -- 6.6.3.4 Fabrication of Cermet Coatings -- 6.6.3.5 Fe-Al Inter-Metallic Compounds -- 6.6.3.6 Cermets -- 6.6.3.7 Ceramics -- 6.7 Immerging Technologies and Applications of Cold Spray -- 6.7.1 Low Pressure Cold Spray (LPCS) -- 6.7.2 Additive Manufacturing -- 6.8 Summary and Conclusions -- Nomenclature -- Latin Alphabet -- Greek Alphabet -- References -- Chapter 7: Combustion Spraying -- 7.1 Overview of Combustion-Based Spray Technologies -- 7.2 Flame Spraying -- 7.2.1 Basic Concepts -- 7.2.2 Powder Flame Spraying -- 7.2.2.1 Spray Gun Design and Process Characteristics -- 7.2.2.2 Applications -- 7.2.3 Solution Flame Spraying (SFS) -- 7.2.4 Wire, Rod, and Cord Spraying -- 7.2.4.1 Spray Gun Design and Process Characteristics -- 7.2.4.2 Applications -- 7.3 High-Velocity Flame Spraying -- 7.3.1 Basic Concepts.7.3.1.1 Spray Gun Design and Process Characteristics.Metal sprayingMetal spraying.660.283Boulos Maher I.905440Fauchais PierreHeberlein J. V(Joachim Viktor),MiAaPQMiAaPQMiAaPQBOOK9910506378303321Thermal spray fundamentals2899832UNINA04566nam 2200577I 450 991095608980332120191219103429.09781789734553178973455X97817897345391789734533(CKB)4100000009347081(MiAaPQ)EBC5897320(UtOrBLW)9781789734553(Perlego)965006(EXLCZ)99410000000934708120191219h20192019 uy 0engurun|||||||||txtrdacontentcrdamediacrrdacarrierPhilosophy of management and sustainability rethinking business ethics and social responsibility in sustainable development /Jacob Dahl Rendtorff (Roskilde University, Denmark)First editionBingley, UK :Emerald Publishing,2019©20191 online resource (264 pages)Includes index.9781789734546 1789734541 Includes bibliographical references.Introduction -- I. From CSR and business ethics to sustainable development goals (SDGs) -- 1. Ethics and justice in the international world: the problem of globalization and the need for a cosmopolitan spirit -- 2. Sustainability and business ethics in a global society -- 3. Ethics of administration - towards sustainability and cosmopolitanism -- 4. Corporate social responsibility, sustainability, and stakeholder management -- 5. Business sustainability and the UN sustainable development goals (SDGs) -- II. Philosophy of management and ethical economy of sustainability -- 6. Philosophy of management and ethical interdependence in the Anthropocene age -- 7. Environmental catastrophe and challenges to ethical decision-making -- 8. From the financial crisis to a new economics of sustainability -- 9. Ethical economy and the environment -- 10. The concept of equality in ethics and political economy -- III. Foundations of philosophy of management, ethics and sustainability -- 11. The dark side of sustainability: evil in organizations and corporations -- 12. The ethics of integrity: a new foundation of sustainable wholeness -- 13. Recognition between cultures as the foundation of ethical and political sustainability -- 14. Philosophy of management in the hypermodern experience economy -- IV. Responsible management of sustainability -- 15. The principle of responsibility: rethinking CSR as SDG-management.Using an interdisciplinary focus, this book combines the research disciplines of philosophy, business management and sustainability to aid and advance both scholarly and practitioner understanding of sustainability management and the United Nations' Sustainable Development Goals (SDGs). As businesses and society continue to transition towards further sustainable development and corporate social responsibility, the key challenge faced is in rethinking the philosophy of management and business ethics to achieve this change in deep and lasting ways. Jacob Dahl Rendtorff explores the philosophical foundations of business ethics, economics and sustainability through four key themes: From CSR and business ethics to sustainable development goals (SDGs) Philosophy of management and ethical economy of sustainability Foundations of philosophy of management, ethics and sustainability Responsible management of sustainability. In reflecting on the works of philosophers and scholars such as Hannah Arendt, Paul Ricœur, Thomas Piketty and Peter Koslowski within the context of sustainability, globalization, anthropocene ethics and corporate social responsibility, the book presents a key understanding of the vital philosophical foundations for creating progressive business models in a more sustainable society.Business ethicsSustainable developmentManagementPhilosophyBusiness & EconomicsBusiness EthicsbisacshBusiness ethics & social responsibilitybicsscBusiness ethics.Sustainable development.ManagementPhilosophy.Business & EconomicsBusiness Ethics.Business ethics & social responsibility.338.927Rendtorff Jacob Dahl894855UtOrBLWUtOrBLWBOOK9910956089803321Philosophy of management and sustainability4368364UNINA