00851cam0-22002891i-450-99000008174040332120160331183114.0000008174FED01000008174(Aleph)000008174FED0100000817420160331d1826----km-y0itay50------bafrey-------001yyRemarques sur la nature, les bornes et l'étendue de la question des surfaces élastiques et équation générale de cessurfacesSophie Germain.ParisHuzard-Courcier182621 p.ElasticitàFrancia.Parigi531.382 3itaGermain,SophieITUNINARICAUNIMARCAQ99000008174040332113 AR 18 B 554090FINBCFINBCUNINA03330nam 22006375 450 991014461890332120200706122555.03-540-40915-710.1007/b96984(CKB)1000000000231194(SSID)ssj0000327497(PQKBManifestationID)11245709(PQKBTitleCode)TC0000327497(PQKBWorkID)10299454(PQKB)11656651(DE-He213)978-3-540-40915-1(MiAaPQ)EBC6285499(MiAaPQ)EBC5592030(Au-PeEL)EBL5592030(OCoLC)55663802(PPN)155166832(EXLCZ)99100000000023119420121227d2004 u| 0engurnn|008mamaatxtccrUniqueness Theorems for Variational Problems by the Method of Transformation Groups /by Wolfgang Reichel1st ed. 2004.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,2004.1 online resource (XIV, 158 p.) Lecture Notes in Mathematics,0075-8434 ;1841Bibliographic Level Mode of Issuance: Monograph3-540-21839-4 Includes bibliographical references (pages [144]-149) and index.Introduction -- Uniqueness of Critical Points (I) -- Uniqueness of Citical Pints (II) -- Variational Problems on Riemannian Manifolds -- Scalar Problems in Euclidean Space -- Vector Problems in Euclidean Space -- Fréchet-Differentiability -- Lipschitz-Properties of ge and omegae.A classical problem in the calculus of variations is the investigation of critical points of functionals {\cal L} on normed spaces V. The present work addresses the question: Under what conditions on the functional {\cal L} and the underlying space V does {\cal L} have at most one critical point? A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry", i.e., a one-parameter group G of transformations of V, which strictly reduces the values of {\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity.Lecture Notes in Mathematics,0075-8434 ;1841Calculus of variationsDifferential equations, PartialCalculus of Variations and Optimal Control; Optimizationhttps://scigraph.springernature.com/ontologies/product-market-codes/M26016Partial Differential Equationshttps://scigraph.springernature.com/ontologies/product-market-codes/M12155Calculus of variations.Differential equations, Partial.Calculus of Variations and Optimal Control; Optimization.Partial Differential Equations.512Reichel Wolfgangauthttp://id.loc.gov/vocabulary/relators/aut214785MiAaPQMiAaPQMiAaPQBOOK9910144618903321Uniqueness theorems for variational problems by the method of transformation groups262667UNINA