01293nam0 22003013i 450 VEA109774820231121125922.0906856021220140924d1988 ||||0itac50 badutgrcnlz01i xxxe z01nP. Erasmianae 2.delen van een arsinoitisch sitologen-archief uit het midden van de tweede eeuw v. Chr.Philip A. VerdultRotterdamJuridisch Instituut, Erasmus UniversiteitVIII, 293 p.[1] fotografia21 cmMededelingen van het Juridisch instituut van de Erasmus universiteit Rotterdam.45 (1988)Tesi discussa presso Erasmus Universiteit Rotterdam nel 1988.001UFI04204722001 Mededelingen van het Juridisch instituut van de Erasmus universiteit Rotterdam.45 (1988)Verdult, Philip A.UBOV424746239014ITIT-0120140924IT-FR0017 Biblioteca umanistica Giorgio ApreaFR0017 VEA1097748Biblioteca umanistica Giorgio Aprea 52S.SIJ. E1 P. Erasm. 2 52SIJ0000014815 VMB RS C 2021020820210208 52P. Erasmianae 2.868884UNICAS03487nam 2200601 450 991081908490332120170822144212.01-4704-0625-X(CKB)3360000000465192(EBL)3114247(SSID)ssj0000889164(PQKBManifestationID)11452888(PQKBTitleCode)TC0000889164(PQKBWorkID)10881944(PQKB)11101893(MiAaPQ)EBC3114247(RPAM)16932269(PPN)195418972(EXLCZ)99336000000046519220150416h20112011 uy 0engur|n|---|||||txtccrQuasi-actions on trees II finite depth Bass-Serre trees /Lee Mosher, Michah Sageev, Kevin WhyteProvidence, Rhode Island :American Mathematical Society,2011.©20111 online resource (105 p.)Memoirs of the American Mathematical Society,0065-9266 ;Number 1008"November 2011, volume 214, number 1008 (fourth of 5 numbers)."0-8218-4712-0 Includes bibliographical references and index.""Contents""; ""Chapter 1. Introduction""; ""1.1. Example applications""; ""1.2. The methods of proof: a special case""; ""1.3. The general setting""; ""1.4. Statements of results""; ""1.5. Structure of the paper""; ""Chapter 2. Preliminaries""; ""2.1. Coarse language""; ""2.2. Coarse properties of subgroups""; ""2.3. Coboundedness principle""; ""2.4. Bass-Serre trees and Bass-Serre complexes""; ""2.5. Irreducible graphs of groups""; ""2.6. Coarse PD(n) spaces and groups""; ""2.7. The methods of proof: the general case""; ""Chapter 3. Depth Zero Vertex Rigidity""""3.1. A sufficient condition for depth zero vertex rigidity""""3.2. Proof of the Depth Zero Vertex Rigidity Theorem""; ""Chapter 4. Finite Depth Graphs of Groups""; ""4.1. Definitions and examples""; ""4.2. Proof of the Vertexâ€?Edge Rigidity Theorem 2.11""; ""4.3. Reduction of finite depth graphs of groups""; ""Chapter 5. Tree Rigidity""; ""5.1. Examples and motivations""; ""5.2. Outline of the Tree Rigidity Theorem""; ""5.3. Special case: isolated edge spaces""; ""5.4. Special case: all edges have depth one""; ""5.4.1. Proof of Lemma 5.5: an action on a 2-complex""""5.4.2. Proof of the Tracks Theorem 5.7""""5.5. Proof of the Tree Rigidity Theorem""; ""Chapter 6. Main Theorems""; ""Chapter 7. Applications and Examples""; ""7.1. Patterns of edge spaces in a vertex space""; ""7.2. Hn vertex groups and Z edge groups""; ""7.3. H3 vertex groups and surface fiber edge groups""; ""7.4. Surface vertex groups and cyclic edge groups""; ""7.5. Graphs of abelian groups""; ""7.6. Quasi-isometry groups and classification""; ""Bibliography""; ""Index""Memoirs of the American Mathematical Society ;Number 1008.Quasi-actions on trees 2Geometric group theoryRigidity (Geometry)Geometric group theory.Rigidity (Geometry)512/.2Mosher Lee1957-1714497Sageev Michah1966-Whyte Kevin1970-MiAaPQMiAaPQMiAaPQBOOK9910819084903321Quasi-actions on trees II4108371UNINA