03745nam 22006375 450 99646647790331620200702092434.03-319-41069-510.1007/978-3-319-41069-2(CKB)3710000000873058(DE-He213)978-3-319-41069-2(MiAaPQ)EBC6302380(MiAaPQ)EBC5596353(Au-PeEL)EBL5596353(OCoLC)959954316(PPN)195510593(EXLCZ)99371000000087305820160930d2016 u| 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierStochastic Porous Media Equations[electronic resource] /by Viorel Barbu, Giuseppe Da Prato, Michael Röckner1st ed. 2016.Cham :Springer International Publishing :Imprint: Springer,2016.1 online resource (IX, 202 p.) Lecture Notes in Mathematics,0075-8434 ;21633-319-41068-7 Includes bibliographical references and index.Foreword -- Preface -- Introduction -- Equations with Lipschitz nonlinearities -- Equations with maximal monotone nonlinearities -- Variational approach to stochastic porous media equations -- L1-based approach to existence theory for stochastic porous media equations -- The stochastic porous media equations in Rd -- Transition semigroups and ergodicity of invariant measures -- Kolmogorov equations -- A Two analytical inequalities -- Bibliography -- Glossary -- Translator’s note -- Index.Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.Lecture Notes in Mathematics,0075-8434 ;2163ProbabilitiesPartial differential equationsFluidsProbability Theory and Stochastic Processeshttps://scigraph.springernature.com/ontologies/product-market-codes/M27004Partial Differential Equationshttps://scigraph.springernature.com/ontologies/product-market-codes/M12155Fluid- and Aerodynamicshttps://scigraph.springernature.com/ontologies/product-market-codes/P21026Probabilities.Partial differential equations.Fluids.Probability Theory and Stochastic Processes.Partial Differential Equations.Fluid- and Aerodynamics.519.2Barbu Viorelauthttp://id.loc.gov/vocabulary/relators/aut13745Da Prato Giuseppeauthttp://id.loc.gov/vocabulary/relators/autRöckner Michaelauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK996466477903316Stochastic Porous Media Equations2196292UNISA01244nam2 22003253i 450 UBO138106220231121125856.0329613504920170206d1985 ||||0itac50 balatdez01i xxxe z01n4: Supplementumed. J. Moreau, H. I. Marrou2. Nachdruckaufl. der Ausg. Berlin 1967HildesheimWeidmann1985VIII, 165 p.23 cm.001PUV02769062001 Inscriptiones latinae christianae veteresedidit Ernestus Diehl4Moreau, Jacques <1918-1961>PALV04953707049403Marrou, Henri-IrénéeCFIV001775070160229Marrou, HenriCFIV156167Marrou, Henri-IrénéeDavenson, HenriCFIV185144Marrou, Henri-IrénéeITIT-0120170206IT-FR0017 Biblioteca umanistica Giorgio ApreaFR0017 NUBO1381062Biblioteca umanistica Giorgio Aprea 52SALA BRAGAS.S.L. 480 (suppl.) 52COB0000908085 VMB RS A 2017020620170206 52Supplementum3640201UNICAS