03013nam0 22004933i 450 BVE047525320231121125418.0978888450295720101007d2008 ||||0itac50 baitamulitz01i xxxe z01n˜Il œCantico dei Cantici nel Medioevoatti del Convegno Internazionale dell'Università degli Studi di Milano e della Società Internazionale per lo studio del Medioevo Latino (S.I.S.M.E.L.)Gargnano sul Garda, 22-24 maggio 2006a cura di Rossana E. GuglielmettiFirenzeSISMEL Edizioni del Galluzzo2008IX, 600 p., [4] c. di tav.ill.25 cm.Millennio medievale76. Atti di convegni23001MIL03785432001 Millennio medievale. Atti di convegni23Bibbia. Vecchio Testamento. Cantico dei canticiCongressi Gargnano 2006FIRRMLC349198I223.921870.3Letteratura latina. Periodo medievale. 750-1350.21Guglielmetti, Rossana E.PUVV365972Università degli studi di MilanoCFIV055009070Società internazionale per lo studio del Medioevo latinoCFIV095029070Guglielmetti, RossanaCFIV339923Guglielmetti, Rossana E.Guglielmetti, Rossana EugeniaCFIV339924Guglielmetti, Rossana E.University <Milano>CFIV069821Università degli studi di MilanoUniversitas studiorum MediolanensisCFIV175208Università degli studi di MilanoUniversità statale <Milano>CFIV221194Università degli studi di MilanoUniversità degli studi <Milano>CFIV261227Università degli studi di MilanoRegia Università degli studi <Milano>RMGV008866Università degli studi di MilanoSocietà internazionale per lo studio del Medio Evo latinoCFIV146262Società internazionale per lo studio del Medioevo latinoS.I.S.M.E.L.CFIV149450Società internazionale per lo studio del Medioevo latinoITIT-0120101007IT-RM0289 IT-RM0290 IT-RM0151 IT-FR0017 Biblioteca Statale A. BaldiniRM0289 BIBLIOTECA ANGELICARM0290 Biblioteca Istituto Storico Italiano Medio Evo - IRM0151 Biblioteca umanistica Giorgio ApreaFR0017 BVE0475253Biblioteca umanistica Giorgio Aprea 52COBAL C.M.302(76)* 52VM 0000851015 VM barcode:01781. - Inventario:38645 FLSVMB 2011012620121204 52SALA BRAGAC.M. 302 (76) 52AMT0000005345 VMN RS Cofinanziamento Anno 2007 prof. Santi.A 2013042320130423 04 06 41 52Cantico dei cantici nel Medioevo1074089UNICAS03875oam 22007574 450 991078834830332120230721045657.01-4623-3560-81-4527-9750-197866128424671-4518-7171-61-282-84246-3(CKB)3170000000055188(EBL)1608154(SSID)ssj0000940078(PQKBManifestationID)11512680(PQKBTitleCode)TC0000940078(PQKBWorkID)10939141(PQKB)10244986(OCoLC)680613607(MiAaPQ)EBC1608154(IMF)WPIEE2009024(EXLCZ)99317000000005518820020129d2009 uf 0engur|n|---|||||txtccrCan Markets Compute Equilibria? /Hunter MonroeWashington, D.C. :International Monetary Fund,2009.1 online resource (22 p.)IMF Working PapersDescription based upon print version of record.1-4519-1607-8 Includes bibliographical references.Contents; I. Introduction; II. Is Computing Equilibria Difficult?; Table; 1. Payoff Matrix for the Prisoner's Dilemma; Figures; 1. NP-complete: Is there a Hamilton Cycle?; 2. P: Is this a Hamilton Cycle?; III. Are There Natural Problems with No Best Algorithm?; A. Superlinear vs. Blum Speedup; B. No Best Algorithm for Integer and Matrix Multiplication?; 3. Boolean circuit: Are at least two inputs "TRUE"?; C. The Power of Cancellation; D. No Best Algorithm for coNP-Complete Problems?; E. No Best Algorithm Versus No Algorithm at All; IV. Conclusion; 4. Is speedup inherited?; ReferencesRecent turmoil in financial and commodities markets has renewed questions regarding how well markets discover equilibrium prices, particularly when those markets are highly complex. A relatively new critique questions whether markets can realistically find equilibrium prices if computers cannot. For instance, in a simple exchange economy with Leontief preferences, the time required to compute equilibrium prices using the fastest known techniques is an exponential function of the number of goods. Furthermore, no efficient technique for this problem exists if a famous mathematical conjecture is correct. The conjecture states loosely that there are some problems for which finding an answer (i.e., an equilibrium price vector) is hard even though it is easy to check an answer (i.e., that a given price vector is an equilibrium). This paper provides a brief overview of computational complexity accessible to economists, and points out that the existence of computational problems with no best solution algorithm is relevant to this conjecture.IMF Working Papers; Working Paper ;No. 2009/024Computational complexityElectronic data processingMacroeconomicsimfNoncooperative GamesimfMicroeconomic Behavior: Underlying PrinciplesimfPrice LevelimfInflationimfDeflationimfAsset pricesimfPricesimfComputational complexity.Electronic data processing.MacroeconomicsNoncooperative GamesMicroeconomic Behavior: Underlying PrinciplesPrice LevelInflationDeflationAsset pricesPricesMonroe Hunter1472700International Monetary Fund.DcWaIMFBOOK9910788348303321Can Markets Compute Equilibria3716534UNINA