03004nam 2200589 450 991078888860332120180731044136.01-4704-0722-1(CKB)3360000000464493(EBL)3113922(SSID)ssj0000888922(PQKBManifestationID)11455675(PQKBTitleCode)TC0000888922(PQKBWorkID)10876173(PQKB)11039557(MiAaPQ)EBC3113922(RPAM)2841644(PPN)195411900(EXLCZ)99336000000046449320140905h19841984 uy 0engur|n|---|||||txtccrAn extension of the Galois theory of Grothendieck /André Joyal, Myles TierneyProvidence, Rhode Island :American Mathematical Society,1984.©19841 online resource (87 p.)Memoirs of the American Mathematical Society,0065-9266 ;Number 309"September 1984, Volume 51, Number 309 (third of 4 numbers)."0-8218-2312-4 Includes bibliographical references.""Table of Contents""; ""Introduction""; ""Chapter I â€? Supâ€?lattices""; ""1. Definitions and duality""; ""2. Limits and colimits""; ""3. Free supâ€?lattices""; ""4. Sub and quotient lattices""; ""5. Tensor products""; ""Chapter II â€? Rings, modules and descent""; ""1. Rings and modules""; ""2. Tensor product of modules""; ""3. Change of rings""; ""4. Flatness, projectivity, and purity""; ""5. Descent theory for modules""; ""Chapter III â€? Locales""; ""1. Locales and commutative monoids""; ""2. Limits and colimits""; ""3. The free locale""; ""4. Local operators and quotients""""5. The splitting locale""""Chapter IV â€? Spaces""; ""1. Subspaces""; ""2. Points and discrete spaces""; ""3. The Sierpinski space""; ""4. Pullbacks and projective limits""; ""5. The splitting space""; ""Chapter V â€? Open maps of spaces""; ""1. Open maps - definition""; ""2. Open subspaces""; ""3. Conditions for openness""; ""4. Open surjections, pullbacks""; ""5. A characterization of discrete spaces""; ""Chapter VI â€? Change of base""; ""1. Change of base for supâ€?lattices and locales""; ""2. Determination of sl(Sâ€?[sup(Aop)] ) and loc(Sâ€?[sup(Aop)] )""Memoirs of the American Mathematical Society ;Number 309.ToposesGalois theoryTheory of descent (Mathematics)Toposes.Galois theory.Theory of descent (Mathematics)512/.32Joyal André350839Tierney Myles1937-MiAaPQMiAaPQMiAaPQBOOK9910788888603321An extension of the Galois theory of Grothendieck3696243UNINA02603nam0 22005293i 450 VAN027766720240715124029.614N978303098327720240611d2022 |0itac50 baengCH|||| |||||Interactions with Lattice PolytopesMagdeburg, Germany, September 2017Alexander M. Kasprzyk, Benjamin NillChamSpringer2022x, 364 p.ill.24 cm001VAN01025742001 Springer proceedings in mathematics & statistics210 Berlin [etc.]Springer2012-38613-XXCommutative algebra [MSC 2020]VANC019732MF13F55Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes [MSC 2020]VANC029014MF13F65Commutative rings defined by binomial ideals, toric rings, etc. [MSC 2020]VANC037118MF14-XXAlgebraic geometry [MSC 2020]VANC019702MF14M25Toric varieties, Newton polyhedra, Okounkov bodies [MSC 2020]VANC023922MF52-XXConvex and discrete geometry [MSC 2020]VANC019811MF52B20Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry) [MSC 2020]VANC023921MFConvex bodyKW:KDelzantKW:KEhrhard polynomialsKW:KFlag matroidKW:KNewton-Okounkov bodyKW:KOptimizationKW:KSeshadri constantKW:KSymplectic toric manifoldsKW:KToric Fano varietyKW:KToric degenerationKW:KToric varietyKW:KCHChamVANL001889KasprzykAlexander M.VANV230159NillBenjaminVANV230161International Conference on Interactions with Lattice Polytopes2017Magdeburg, GermanyVANV230162Springer <editore>VANV108073650ITSOL20240719RICAhttps://doi.org/10.1007/978-3-030-98327-7E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN0277667BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-Book 8768 08eMF8768 20240618 Interactions with lattice polytopes2998604UNICAMPANIA