02299nam0 22004813i 450 VAN027512320240626114943.649N978303078007420240417d2021 |0itac50 baengCH|||| |||||Polyfold and Fredholm TheoryHelmut Hofer, Krzysztof Wysocki, Eduard ZehnderChamSpringer2021xxii, 1001 p.ill.24 cm001VAN00572182001 Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A series of modern surveys in mathematics210 Berlin [etc.]Springer7258-XXGlobal analysis, analysis on manifolds [MSC 2020]VANC019758MF58D27Moduli problems for differential geometric structures [MSC 2020]VANC020915MF58C15Implicit function theorems; global Newton methods on manifolds [MSC 2020]VANC022282MF58B10Differentiability questions for infinite-dimensional manifolds [MSC 2020]VANC023459MF58B15Fredholm structures on infinite-dimensional manifolds [MSC 2020]VANC037391MFBubbling offKW:KFoundations of symplectic field theoryKW:KFredholm TheoryKW:KM-polyfoldsKW:KNonlinear Partial Differential EquationsKW:KPolyfoldsKW:KScale calculusKW:KScale smoothnessKW:KSymplectic geometryKW:KCHChamVANL001889HoferHelmutVANV05668142587WysockiKrzysztofVANV227614938809ZehnderEduardVANV05668242588Springer <editore>VANV108073650ITSOL20240628RICAhttps://doi.org/10.1007/978-3-030-78007-4E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN0275123BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 8367 08eMF8367 20240503 Polyfold and Fredholm Theory2116148UNICAMPANIA