02226nam0 22004573i 450 VAN026117620231006113839.568N978354035536620230711d1979 |0itac50 baengDE|||| |||||Function Theory on Manifolds Which Possess a PoleR. E. Greene, H. WuBerlinSpringer1979iv, 218 p.ill.24 cm001VAN01022502001 Lecture notes in mathematics210 Berlin [etc.]Springer69953-XXDifferential geometry [MSC 2020]VANC019813MF32QxxComplex manifolds [MSC 2020]VANC020712MF53C55Global differential geometry of Hermitian and Kahlerian manifolds [MSC 2020]VANC020916MF35N15$\overline\partial$-Neumann problem and formal complexes in context of PDEs [MSC 2020]VANC023076MF53C20Global Riemannian geometry, including pinching [MSC 2020]VANC023825MF32Q45Hyperbolic and Kobayashi hyperbolic manifolds [MSC 2020]VANC024124MF32-XXSeveral complex variables and analytic spaces [MSC 2020]VANC024999MFCartan-Hadamard manifoldsKW:KFunction TheoryKW:KFunctionsKW:KManifoldsKW:KBerlinVANL000066GreeneRobert E.VANV04055155338WuHung-HsiVANV206619535019Springer <editore>VANV108073650Greene, R. E.Greene, Robert E.VANV040552Greene, Robert EveristGreene, Robert E.VANV060119ITSOL20240614RICAhttps://doi.org/10.1007/BFb0063413E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN0261176BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 6205 08eMF6205 20230725 Function Theory on Manifolds Which Possess a Pole3393849UNICAMPANIA