01992nam0 2200457 i 450 VAN012541120230801023123.225N978303015675620191111d2019 |0itac50 baengCH|||| |||||Siegel Modular FormsA Classical and Representation-Theoretic ApproachAmeya PitaleChamSpringer2019ix, 138 p.ill.24 cm001VAN01022502001 Lecture notes in mathematics210 Berlin [etc.]Springer2240VAN0234182Siegel Modular Forms : A Classical and Representation-Theoretic Approach190755911-XXNumber theory [MSC 2020]VANC019688MF20-XXGroup theory and generalizations [MSC 2020]VANC019715MFAutomorphic representationsKW:KDeligne's conjectureKW:KFermat's Last TheoremKW:KFourier coefficientsKW:KHecke algebraKW:KL-functionsKW:KNumber theoryKW:KRepresentation TheoryKW:KShimura-Taniyama-Weil conjectureKW:KSiegel modular formsKW:KSymplectic GroupsKW:KCHChamVANL001889PitaleAmeyaVANV096842769116Springer <editore>VANV108073650ITSOL20240614RICAhttp://doi.org/10.1007/978-3-030-15675-6E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN0125411BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 08LNM2240 20191111 Siegel Modular Forms : A Classical and Representation-Theoretic Approach1907559UNICAMPANIA