02218nam0 2200457 i 450 VAN012535820230706113632.730N978331911086820191106d2015 |0itac50 baengCH|||| |||||ˆThe ‰Mathematical Theory of Time-Harmonic Maxwell's EquationsExpansion-, Integral-, and Variational MethodsAndreas Kirsch, Frank HettlichChamSpringer2015xiii, 337 p.24 cm001VAN00237172001 Applied mathematical sciences210 Berlin [etc]Springer190VAN0235295ˆThe ‰Mathematical Theory of Time-Harmonic Maxwell's Equation244062578-XXOptics, electromagnetic theory [MSC 2020]VANC022356MF33-XXSpecial functions [MSC 2020]VANC022590MF35A15Variational methods applied to PDEs [MSC 2020]VANC022747MF35J05Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation [MSC 2020]VANC025548MF35Q61Maxwell equations [MSC 2020]VANC032320MF33C55Spherical harmonics [MSC 2020]VANC033679MFElectromagnetic TheoryKW:KHelmholtz EquationKW:KLipschitz domainsKW:KMaxwell's equationsKW:KPartial differential equationsKW:KSobolev spacesKW:KCHChamVANL001889KirschAndreasVANV04402428299HettlichFrankVANV096792768310Springer <editore>VANV108073650ITSOL20240614RICAhttp://doi.org/10.1007/978-3-319-11086-8E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN0125358BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 0474 08eMF474 20191107 Mathematical Theory of Time-Harmonic Maxwell's Equation2440625UNICAMPANIA